955 resultados para GROWTH TRAITS
Resumo:
Vertebrates play a major role in dispersing seeds of fleshy-fruited alien plants. However, we know little of how the traits of alien fleshy fruits compare with indigenous fleshy fruits, and how these differences might contribute to invasion success. In this study, we characterised up to 38 fruit morphology, pulp nutrient and phenology traits of an assemblage of 34 vertebrate-dispersed alien species in south-eastern Queensland, Australia. Most alien fruits were small (81%\15 mm in mean width), and had watery fruit pulps that were high in sugars and low in nitrogen and lipids. When compared to indigenous species, alien fruits had significantly smaller seeds. Further, alien fruit pulps contained more sugar and more variable (and probably greater) nitrogen per pulp wet weight, and species tended to have longer fruiting seasons than indigenous species. Our analyses suggest that fruit traits could be important in determining invasiveness and could be used to improve pre- and post-border weed risk assessment.
Resumo:
Background and Aims: Success of invasive plant species is thought to be linked with their higher leaf carbon fixation strategy, enabling them to capture and utilize resources better than native species, and thus pre-empt and maintain space. However, these traits are not well-defined for invasive woody vines. Methods: In a glass house setting, experiments were conducted to examine how leaf carbon gain strategies differ between non-indigenous invasive and native woody vines of south-eastern Australia, by investigating their biomass gain, leaf structural, nutrient and physiological traits under changing light and moisture regimes. Key Results: Leaf construction cost (CC), calorific value and carbon : nitrogen (C : N) ratio were lower in the invasive group, while ash content, N, maximum photosynthesis, light-use efficiency, photosynthetic energyuse efficiency (PEUE) and specific leaf area (SLA) were higher in this group relative to the native group. Trait plasticity, relative growth rate (RGR), photosynthetic nitrogen-use efficiency and water-use efficiency did not differ significantly between the groups. However, across light resource, regression analyses indicated that at a common (same) leaf CC and PEUE, a higher biomass RGR resulted for the invasive group; also at a common SLA, a lower CC but higher N resulted for the invasive group. Overall, trait co-ordination (using pair-wise correlation analyses) was better in the invasive group. Ordination using 16 leaf traits indicated that the major axis of invasive-native dichotomy is primarily driven by SLA and CC (including its components and/or derivative of PEUE) and was significantly linked with RGR. Conclusions: These results demonstrated that while not all measures of leaf resource traits may differ between the two groups, the higher level of trait correlation and higher revenue returned (RGR) per unit of major resource need (CC) and use (PEUE) in the invasive group is in line with their rapid spread where introduced.
Resumo:
‘P18’ was first produced in 1992 and is a mutant genotype obtained from a hybrid Bermudagrass line believed to be ‘Tifdwarf’, which was grown in a greenhouse owned by H&H Seed Company in Yuma, Arizona. ‘P18’ was selected for its extremely fine leaf texture, its high shoot density under close mowing, its rapid growth rate, and its uniform dark green colour, and was subsequently evaluated for these traits and characteristics. Propagation: vegetative. Breeder: Howard E. Kaewer, Eden Prairie, MN, USA. PBR Application Number 2007/179, Certificate Number 3567, granted 13 August 2007.
Resumo:
Pseudocercospora macadamiae causes husk spot of macadamia. Husk spot control would be improved by verifying the stages in fruit development susceptible to infection, and determine some of the climatic conditions likely to lead to high disease pressure periods in the field. Our results showed that the percent conidia germination and growth of germ tubes and mycelia of P. macadamiae were greatest at 26 degrees C, with better conidia germination associated with high relative humidity and free water. The exposure of match-head-sized and pea-sized fruit stages to natural P. macadamiae inoculum in the field led to 2 5-fold increases in husk spot incidence, and up to 8.5-fold increases in premature abscission, compared with unexposed fruit. Exposure of fruit stages later than match-head-sized and pea-sized fruit generally caused no further increases in disease incidence or premature abscission. Climatic conditions were found to have a strong influence on the behaviour of P. macadamiae, the host, oil accumulation, and the subsequent impact of husk spot on premature abscission. Our findings suggest that fungicide application should target fruit at the match-head-sized stage of development in order to best reduce yield losses, particularly in seasons where oil accumulation in fruit is prolonged and climatic conditions are optimal for P. macadamiae.
Resumo:
Cinnamate is the product of phenylalanine ammonialyase (PAL). This compound, a precursor of phenolics in plants, has been shown to be phytotoxic. Cinnamate inhibits PAL activity in cucumber seedlings. DL-phenylalanine has the same effect on the enzyme but does not affect growth. Actinomycin D and cycloheximide are phytotoxic and inhibit PAL. Production of a double-peg has been noticed in the seedlings, grown in the presence of actinomycin D. Light stimulates PAL activity in the seedling.
Resumo:
Exotic and invasive woody vines are major environmental weeds of riparian areas, rainforest communities and remnant natural vegetation in coastal eastern Australia, where they smother standing vegetation, including large trees, and cause canopy collapse. We investigated, through glasshouse resource manipulative experiments, the ecophysiological traits that might facilitate faster growth, better resource acquisition and/or utilization and thus dominance of four exotic and invasive vines of South East Queensland, Australia, compared with their native counterparts. Relative growth rate was not significantly different between the two groups but water use efficiency (WUE) was higher in the native species while the converse was observed for light use efficiency (quantum efficiency, AQE) and maximum photosynthesis on a mass basis (Amax mass). The invasive species, as a group, also exhibited higher respiration load, higher light compensation point and higher specific leaf area. There were stronger correlations of leaf traits and greater structural (but not physiological) plasticity in invasive species than in their native counterparts. The scaling coefficients of resource use efficiencies (WUE, AQE and respiration efficiency) as well as those of fitness (biomass accumulated) versus many of the performance traits examined did not differ between the two species-origin groups, but there were indications of significant shifts in elevation (intercept values) and shifts along common slopes in many of these relationships – signalling differences in carbon economy (revenue returned per unit energy invested) and/or resource usage. Using ordination and based on 14 ecophysiological attributes, a fair level of separation between the two groups was achieved (51.5% explanatory power), with AQE, light compensation point, respiration load, WUE, specific leaf area and leaf area ratio, in decreasing order, being the main drivers. This study suggests similarity in trait plasticity, especially for physiological traits, but there appear to be fundamental differences in carbon economy and resource conservation between native and invasive vine species.
Resumo:
Drought during the pre-flowering stage can increase yield of peanut. There is limited information on genotypic variation for tolerance to and recovery from pre-flowering drought (PFD) and more importantly the physiological traits underlying genotypic variation. The objectives of this study were to determine the effects of moisture stress during the pre-flowering phase on pod yield and to understand some of the physiological responses underlying genotypic variation in response to and recovery from PFD. A glasshouse and field experiments were conducted at Khon Kaen University, Thailand. The glasshouse experiment was a randomized complete block design consisting of two watering regimes, i.e. fully-irrigated control and 1/3 available soil water from emergence to 40 days after emergence followed by adequate water supply, and 12 peanut genotypes. The field experiment was a split-plot design with two watering regimes as main-plots, and 12 peanut genotypes as sub-plots. Measurements of N-2 fixation, leaf area (LA) were made in both experiments. In addition, root growth was measured in the glasshouse experiment. Imposition of PFD followed by recovery resulted in an average increase in yield of 24 % (range from 10 % to 57 %) and 12 % (range from 2 % to 51 %) in the field and glasshouse experiments, respectively. Significant genotypic variation for N-2 fixation, LA and root growth was also observed after recovery. The study revealed that recovery growth following release of PFD had a stronger influence on final yield than tolerance to water deficits during the PFD. A combination of N-2 fixation, LA and root growth accounted for a major portion of the genotypic variation in yield (r = 0.68-0.93) suggesting that these traits could be used as selection criteria for identifying genotypes with rapid recovery from PFD. A combined analysis of glasshouse and field experiments showed that LA and N-2 fixation during the recovery had low genotype x environment interaction indicating potential for using these traits for selecting genotypes in peanut improvement programs.
Resumo:
Eighty six full-sib Corymbia F1 hybrid families (crosses between C. torelliana and four spotted gum taxa: C. citriodora subsp. variegata, C. citriodora subsp. citriodora, C. henryi and C. maculata), were planted in six trials across six disparate sites in south-eastern Queensland to evaluate their productivity and determine their potential utility for plantation forestry. In each trial, the best-growing 20% of hybrid families grew significantly faster (P=0.05) than open-pollinated seedlots of the parent species Corymbia citriodora subsp. variegata, ranging from 107% to 181% and 127% to 287% of the height and diameter respectively. Relative performance of hybrid families growing on more than one site displayed consistency in ranking for growth across sites and analysis showed low genotype-by-environment interaction. Heritability estimates based on female and male parents across two sites at age six years for height and diameter at breast height, were high (0.62±0.28 to 0.64±0.35 and 0.31±0.21 to 0.69±0.37 respectively), and low to moderate (0.03±0.04 to 0.33±0.22) for stem straightness, branch size, incidence of ramicorns, and frost and disease resistance traits at ages one to three years. The proportion of dominance variance for height and diameter had reduced to zero by age six years. Based on these promising results, further breeding and pilot-scale family forestry and clonal forestry deployment is being undertaken. These results have also provided insights regarding the choice of a future hybrid breeding strategy.
Resumo:
Spotted gum dominant forests occur from Cooktown in northern Queensland (Qld) to Orbost in Victoria (Boland et al. 2006) and these forests are commercially very important with spotted gum the most commonly harvested hardwood timber in Qld and one of the most important in New South Wales (NSW). Spotted gum has a wide range of end uses from solid wood products through to power transmission poles and generally has excellent sawing and timber qualities (Hopewell 2004). The private native forest resource in southern Qld and northern NSW is a critical component of the hardwood timber industry (Anon 2005, Timber Qld 2006) and currently half or more of the native forest timber resource harvested in northern NSW and Qld is sourced from private land. However, in many cases productivity on private lands is well below what could be achieved with appropriate silvicultural management. This project provides silvicultural management tools to assist extension staff, land owners and managers in the south east Qld and north eastern NSW regions. The intent was that this would lead to improvement of the productivity of the private estate through implementation of appropriate management. The other intention of this project was to implement a number of silvicultural experiments and demonstration sites to provide data on growth rates of managed and unmanaged forests so that landholders can make informed decisions on the future management of their forests. To assist forest managers and improve the ability to predict forest productivity in the private resource, the project has developed: • A set of spotted gum specific silvicultural guidelines for timber production on private land that cover both silvicultural treatment and harvesting. The guidelines were developed for extension officers and property owners. • A simple decision support tool, referred to as the spotted gum productivity assessment tool (SPAT), that allows an estimation of: 1. Tree growth productivity on specific sites. Estimation is based on the analysis of site and growth data collected from a large number of yield and experimental plots on Crown land across a wide range of spotted gum forest types. Growth algorithms were developed using tree growth and site data and the algorithms were used to formulate basic economic predictors. 2. Pasture development under a range of tree stockings and the expected livestock carrying capacity at nominated tree stockings for a particular area. 3. Above-ground tree biomass and carbon stored in trees. •A series of experiments in spotted gum forests on private lands across the study area to quantify growth and to provide measures of the effect of silvicultural thinning and different agro-forestry regimes. The adoption and use of these tools by farm forestry extension officers and private land holders in both field operations and in training exercises will, over time, improve the commercial management of spotted gum forests for both timber and grazing. Future measurement of the experimental sites at ages five, 10 and 15 years will provide longer term data on the effects of various stocking rates and thinning regimes and facilitate modification and improvement of these silvicultural prescriptions.
Resumo:
Cardiovascular diseases (CVD) are a major cause of death and disability in Western countries and a growing health problem in the developing world. The genetic component of both coronary heart disease (CHD) and ischemic stroke events has been established in twin studies, and the traits predisposing to CVD, such as hypertension, dyslipidemias, obesity, diabetes, and smoking behavior, are all partly hereditary. Better understanding of the pathophysiology of CVD-related traits could help to target disease prevention and clinical treatment to individuals at an especially high disease risk and provide novel pharmaceutical interventions. This thesis aimed to clarify the genetic background of CVD at a population level using large Nordic population cohorts and a candidate gene approach. The first study concentrated on the allelic diversity of the thrombomodulin (THBD) gene in two Finnish cohorts, FINRISK-92 and FINRISK-97. The results from this study implied that THBD variants do not substantially contribute to CVD risk. In the second study, three other candidate genes were added to the analyses. The study investigated the epistatic effects of coagulation factor V (F5), intercellular adhesion molecule -1 (ICAM1), protein C (PROC), and THBD in the same FINRISK cohorts. The results were encouraging; we were able to identify several single SNPs and SNP combinations associating with CVD and mortality. Interestingly, THBD variants appeared in the associating SNP combinations despite the negative results from Study I, suggesting that THBD contributes to CVD through gene-gene interactions. In the third study, upstream transcription factor -1 (USF1) was analyzed in a cohort of Swedish men. USF1 was associated with metabolic syndrome, characterized by accumulation of different CVD risk factors. A putative protective and a putative risk variant were identified. A direct association with CVD was not observed. The longitudinal nature of the study also clarified the effect of USF1 variants on CVD risk factors followed in four examinations throughout adulthood. The three studies provided valuable information on the study of complex traits, highlighting the use of large study samples, the importance of replication, and the full coverage of the major allelic variants of the target genes to assure reliable findings. Although the genetic basis of coronary heart disease and ischemic stroke remains unknown, single genetic findings may facilitate the recognition of high-risk subgroups.
Resumo:
We present a theoretical analysis of the dynamics of crystal growth from a supercooled melt. A molecular theory of crystal growth that pays proper attention to the structure at the liquid-solid interface is discussed.