985 resultados para GREMLIN-MEDIATED DECREASE
Resumo:
The kinetics of reduction of hexacyanoferrate(III) by excess thiosulfate, mediated by RuO2.xH2O, are investigated. At high concentrations of S2O32- (0.1 mol dm-3) the kinetics of Fe(CN)63- reduction are first order with respect to [Fe(CN)63-] and [RuO2.xH2O] and independent of [Fe(CN)64-], [S2O32-] and [S4O62-]. At relatively low concentrations Of S2O32- (0.01 mol dm-3) and in the presence of appreciable concentrations of Fe(CN)64- and S4O62- (0.01 mol dm-3) the kinetics depend directly upon [Fe(CN)63-] and [RuO2.xH2O] and inversely upon [Fe(CN)64-]. Both sets of kinetics can be rationalised using an electrochemical model of redox catalysts in which a reversible reduction reaction [Fe(CN)63- + e- --> Fe(CN)64-] is coupled to an irreversible oxidation reaction (s2O32- - e- --> 1/2S4O62-), by a dispersion of RuO2.xH2O microelectrodes. At high concentrations Of S2O32- this model predicts that the kinetics of Fe(CN)63- reduction are controlled by the rate of diffusion of the Fe(CN)63- ions to the RuO2.xH2O particles. The kinetics observed at low concentrations of S2O32- are predicted by the electrochemical model, assuming that the Tafel slope for the oxidation Of S2O32- to S4O62- on the RuO2.xH2O particles is 56.4 mV decade-1.
Resumo:
The kinetics of the oxidation of Ru(bpy)32+ to Ru(bpy)33+ by T13+ ions, catalyzed by a dispersion of RuO2-xH2O in 3 mol dm-3 HNO3, are reported as a function of [Ru(bpy)32+], [Tl3+], [Tl+], [RuO2.xH2O], and temperature. The kinetics of Ru(bpy)32+ oxidation fit an electrochemical model of redox catalysis involving electron transfer between the two electrochemically reversible redox couples, i.e. Ru(bpy)33+/Ru(bpy)32+ and Tl3+/Tl+, mediated by the dispersion of microelectrode particles of RuO2.xH2O. In this model, the rate of reaction is assumed to be controlled by the diffusion of Ru(bpy)32+ toward, and Ru(bpy)33+ away from, the catalyst particles. The Arrhenius activation energy for the catalyzed reaction is 25.9 +/- 0.7 kJ mol-1, and the changes in enthalpy and entropy for the reaction are 36 +/- 2 kJ mol-1 and 127 +/- 6 J mol-1 K-1, respectively. This work describes a rare example of reversible heterogeneous redox catalysis.
Resumo:
A number of different carbon blacks are tested for activity as chlorine catalysts in the oxidation of chloride (2 mol dm-3 in 0.5 mol dm-3 H2SO4) to chlorine by Ce(IV) ions, that is,
Resumo:
The kinetics of oxidation of water to oxygen by MnO4-, mediated by thermally activated ruthenium dioxide hydrate, has been studied. The rate of catalysis is 0.8 order with respect to the surface concentration of MnO4- (which in turn appears to fit a Langmuir adsorption isotherm) and proportional to the catalyst concentration, but is independent of the concentration of manganese(II) ions. The catalysed reaction appears to have an activation energy of 50 +/- 1 kJ mol-1. These observed kinetics are readily rationalised using an electrochemical model in which the catalyst particles act as microelectrodes providing a medium for electron transfer between the highly irreversible oxidation of water to O2 and the highly irreversible reduction of MnO4- to Mn2+.
Resumo:
The rate of oxidation of reduced methyl viologen (MV+4) by water, catalyzed by colloidal Pt/Al2O3, is reduced by a factor of congruent-to 5 when D2O is used as a solvent rather than H2O in the presence of a pH 4.40 acetate buffer. In contrast, the rate measured in the presence of a pH 3.05 buffer is reduced only slightly when D2O replaces H2O. H/D isotope separation factors for the methyl viologen mediated reduction of water to hydrogen catalyzed by Pt/Al2O3 are 4.22 (+/- 0.15) at pH 4.40 and 5.99 (+/- 0.11) at pH 3.05, at 25-degrees-C. These data are interpreted in terms of the electrochemical model for metal-catalyzed redox reactions with a pH-dependent mechanism for the hydrogen-evolving reaction. It is proposed that hydrogen atom combination on the catalyst surface is the rate-limiting step at pH 4.40, whereas at pH 3.05 diffusion of MV2+4 is rate limiting and hydrogen evolution proceeds via the electrochemical reaction between a surface-adsorbed hydrogen atom and a solution-phase proton.
Resumo:
A number of different, characterised, supported and unsupported oxides of Ru(IV) and Ir(IV) have been tested for activity as a chlorine catalyst in the oxidation of brine by Ce(IV) ions. All the different materials tested gave yields of chlorine of > 90% and first-order kinetics for the reduction of the Ce(IV) ions. The samples prepared by the Adams method were the most active of the materials tested and are typified by high surface areas and appreciable activities per unit area. The kinetics of the catalysed reduction of Ce(IV) ions by brine were studied in detail using an Ru(IV) oxide prepared by the Adams method and supported on TiO2 and the results were rationalised in terms of an electrochemical model in which the rate-determining step is the diffusion-controlled reduction of Ce(IV) ions. In support of this model the measured activation energies for the oxidation of brine by Ce(IV) ions, catalysed by either a supported or unsupported Adams catalyst, were both close (18-21 kJ mol-1) to that expected for a diffusion-controlled reaction (ca. 15 kJ mol-1).
KINETIC-STUDY OF THE OXIDATION OF WATER BY CE-4 IONS MEDIATED BY ACTIVATED RUTHENIUM DIOXIDE HYDRATE
OXIDATION OF CHLORIDE TO CHLORINE BY CERIUM(IV) IONS MEDIATED BY A MICROHETEROGENEOUS REDOX CATALYST
Resumo:
Loop-mediated isothermal amplification (LAMP) is an innovative technique that allows the rapid detection of target nucleic acid sequences under isothermal conditions without the need for complex instrumentation. The development, optimization, and clinical validation of a LAMP assay targeting the ctrA gene for the rapid detection of capsular Neisseria meningitidis were described. Highly specific detection of capsular N. meningitidis type strains and clinical isolates was demonstrated, with no cross-reactivity with other Neisseria spp. or with a comprehensive panel of other common human pathogens. The lower limit of detection was 6 ctrA gene copies detectable in 48 min, with positive reactions readily identifiable visually via a simple color change. Higher copy numbers could be detected in as little as 16 min. When applied to a total of 394 clinical specimens, the LAMP assay in comparison to a conventional TaqMan® based real-time polymerase chain reaction system demonstrated a sensitivity of 100% and a specificity of 98.9% with a ? coefficient of 0.942. The LAMP method represents a rapid, sensitive, and highly specific technique for the detection of N. meningitidis and has the potential to be used as a point-of-care molecular test and in resource-poor settings.
Resumo:
We have previously shown that isoprenylation and/or additional pest-translational processing of the G protein gamma(1) subunit carboxyl terminus is required for beta(1) gamma(1) subunit stimulation of phospholipase C-beta(2) (PLC beta(2)) [Dietrich, A., Meister, M., Brazil, D., Camps, M., & Gierschik, P. (1994) Eur. J. Biochem. 219, 171-178]. To examine whether isoprenylation of the gamma(1) subunit alone is sufficient for beta(1) gamma(1)-mediated PLC beta(2) stimulation or whether any of the two subsequent modifications, proteolytic removal of the carboxyl-terminal tripeptide and/or carboxylmethylation, is required for this effect, nonisoprenylated recombinant beta(1) gamma(1) dimers were produced in baculovirus-infected insect cells, purified to near homogeneity, and then isoprenylated in vitro using purified recombinant protein farnesyltransferase. Analysis of the beta(1) gamma(1) dimer after in vitro farnesylation by reversed phase high-performance liquid chromatography followed by delayed extraction matrix-assisted laser desorption/ionization mass spectrometry confirmed that the gamma(1) subunit was carboxyl-terminally farnesylated but not proteolyzed and carboxylmethylated. Functional reconstitution of in vitro-farnesylated beta(1) gamma(1) dimers with a recombinant PLC beta(2) isozyme revealed that farnesylation rendered recombinant nonisoprenylated beta(1) gamma(1) dimers capable of stimulating PLC beta(2) and that the degree of this stimulation was only approximately 45% lower for in vitro-farnesylated beta(1) gamma(1) dimers than for fully modified native beta(1) gamma(1) purified from bovine retinal rod outer segments. Taken together, these results suggest that isoprenylation of the gamma subunit is both necessary and sufficient for beta gamma dimer-mediated stimulation of phospholipase C.