998 resultados para GOLD CLUSTERS
Resumo:
A happy medium: Volumetric adsorption of carbon monoxide at 308 K and UHR-HAADF-STEM, HREM, and computer modeling techniques were compared. Experimental CO/Au ratios at saturation coverage for two supported gold catalysts were shown to fit very well the predictions of a nanostructural model that considers CO adsorption on gold sites with coordination numbers of less than eight.
Resumo:
Gold nanoparticles (GNPs) are of considerable interest for use as a radiosensitizer, because of their biocompatibility and their ability to increase dose deposited because of their high mass energy absorption coefficient. Their sensitizing properties have been verified experimentally, but a discrepancy between the experimental results and theoretical predictions suggests that the sensitizing effect does not depend solely on gold's superior absorption of energetic photons. This work presents the results of three sets of experiments that independently mapped out the energy dependence of the radiosensitizing effects of GNPs on plasmid DNA suspended in water. Incident photon energy was varied from 11.8 to 80 keV through the use of monochromatic synchrotron and broadband X-rays. These results depart significantly from the theoretical predictions in two ways: First, the sensitization is significantly larger than would be predicted; second, it does not vary with energy as would be predicted from energy absorption coefficients. These results clearly demonstrate that the effects of GNP-enhanced therapies cannot be predicted by considering additional dose alone and that a greater understanding of the processes involved is necessary for the development of future therapeutics.
Resumo:
Two stable nanofluids comprising of mixed valent copper(I,II) oxide clusters (<1 nm) suspended in 1-butyl-3-methylimidazolium acetate, [C(4)mim][OAc], and copper(II) oxide nanoparticles (<50 nm) suspended in trioctyl(dodecyl) phosphonium acetate, [P-88812][OAc], were synthesised in a facile one-pot reaction from solutions of copper(II) acetate hydrate in the corresponding ionic liquids. Formation of the nanostructures was studied using 13C NMR spectroscopy and differential scanning calorimetry (DSC). From a solution of Cu(OAc)2 in 1-ethyl-3-methylimidazolium acetate, [C2mim][OAc], crystals were obtained that revealed the structure of [C2mim][Cu3(OAc)5(OH)2(H2O)]center dot H2O, indicating the formation of copper hydroxo-clusters in the course of the reaction. Synthesised nanostructures were studied using transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Physical properties of the prepared IL-nanofluids were examined using IR and UV-VIS spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and densitometry.
Resumo:
Background and purpose: The addition of gold nanoparticles (GNPs) to tumours leads to an increase in dose due to their high density and energy absorption coefficient, making it a potential radiosensitiser. However, experiments have observed radiosensitisations significantly larger than the increase in dose alone, including at megavoltage energies where gold's relative energy absorption is lowest. This work investigates whether GNPs create dose inhomogeneities on a sub-cellular scale which combine with non-linear dose dependence of cell survival to be the source of radiosensitisation at megavoltage energies.
Resumo:
A recent paper by Lechtman et al (2011 Phys. Med. Biol. 56 4631-47) presented Monte Carlo modelling of gold nanoparticle dose modification. In it, they predict that the introduction of gold nanoparticles has the strongest effect with x-rays at kilovoltage energies, and that negligible increases in dose are expected at megavoltage energies. While these results are in agreement with others in the literature (including those produced by our group), the conclusion that '(goldnanoparticle) radiosensitization using a 6 MV photon source is not clinically feasible' appears to conflict with recently published experimental studies which have shown radiosensitization using 6 MV x-ray sources with relatively low gold concentrations. The increasing disparity between theoretical predictions of dose enhancement and experimental results in the field of gold nanoparticle radiosensitization suggests that, while the ability of gold nanoparticles to modify dose within a tumour volume is well understood, the resulting radiosensitization is not simply correlated with this measure. This highlights the need to validate theoretical predictions of this kind against experimental measurements, to ensure that the scenarios and values being modelled are meaningful within a therapeutic context.
Gender, achievement and the ‘Gold Standard’: differential performance in the GCE A level examination
Resumo:
Robust thin-film oxygen sensors were fabricated by encapsulating a lipophilic, polynuclear gold(I) complex, bis{m-(bis(diphenylphosphino)octadecylamine-P,P')}dichlorodigold(I), in oxygen permeable polystyrene and ormosil matrices. Strong phosphorescence, which was quenched by gaseous and dissolved oxygen, was observed from both matrices. The polystyrene encapsulated dye exhibited downward-turning Stern-Volmer plots which were well fitted by a two-site model. The ormosil trapped complex showed linear Stern-Volmer plots for dissolved oxygen quenching but was downward turning for gaseous oxygen. No leaching was observed when the ormosil based sensors were immersed in flowing water over an 8 h period. Both films exhibited fully reversible response and recovery to changing oxygen concentration with rapid response times. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Thin films of titanium dioxide and titanium dioxide with incorporated gold and silver nanoparticles were deposited onto glass microscope slides, steel and titanium foil coupons by two sol-gel dip-coating methods. The film's photocatalytic activity and ability to evolve oxygen in a sacrificial solution were assessed. It was found that photocatalytic activity increased with film thickness (from 50 to 500 nm thick samples) for the photocatalytic degradation of methylene blue in solution and resazurin redox dye in an intelligent ink dye deposited on the surface. Contrastingly, an optimum film thickness of similar to 200 nm for both composite and pure films of titanium dioxide was found for water oxidation, using persulfate (S2O82-) as a sacrificial electron acceptor. The nanoparticle composite films showed significantly higher activity in oxygen evolution studies compared with plain TiO2 films.
Resumo:
The use of two gold compounds incorporated into thin plastic films as luminescence quenching oxygen sensors is described. The films are sensitive both to gaseous oxygen and to oxygen dissolved in nonaqueous media such as ethanol. The luminescence quenching of these sensors by oxygen obeys the Stern-Volmer equation and Stern-Volmer constants of 5.35 x 10(-3) and 0.9 x 10(-3) Torr(-1) are found, respectively, for the two dyes in a polystyrene polymer matrix. The sensitivity of the films is strongly influenced by the nature of the polymer matrix, and greatest sensitivity was found in systems based an the polymers polystyrene or cellulose acetate butyrate. Sensitivity was not found to be temperature dependent though raising the temperature hom 15 to 50 degrees C did result in a slight decrease in emission intensity and a hypsochromic shift in the emission wavelength. The rate of response and recovery of the sensors can be increased either by decreasing film thickness or by increasing the operating temperature. The operational and storage stability of these films is generally good though exposure to light should be avoided as one of the dyes tends to undergo photobleaching probably due to a photoinduced ligand substitution reaction.
Resumo:
We present new observations of 470 stars using the Fibre Large Array Multi-Element Spectrograph ( FLAMES) instrument in fields centered on the clusters NGC330 and NGC346 in the Small Magellanic Cloud (SMC), and NGC2004 and the N11 region in the Large Magellanic Cloud (LMC). A further 14 stars were observed in the N11 and NGC330 fields using the Ultraviolet and Visual Echelle Spectrograph (UVES) for a separate programme. Spectral classifications and stellar radial velocities are given for each target, with careful attention to checks for binarity. In particular, we have investigated previously unexplored regions around the central LH9/LH10 complex of N11, finding similar to 25 new O-type stars from our spectroscopy. We have observed a relatively large number of Be-type stars that display permitted Fe II emission lines. These are primarily not in the cluster cores and appear to be associated with classical Be-type stars, rather than pre main-sequence objects. The presence of the Fe II emission, as compared to the equivalent width of Ha, is not obviously dependent on metallicity. We have also explored the relative fraction of Be- to normal B-type stars in the field-regions near to NGC330 and NGC2004, finding no strong evidence of a trend with metallicity when compared to Galactic results. A consequence of service observations is that we have reasonable time-sampling in three of our FLAMES fields. We find lower limits to the binary fraction of O- and early B-type stars of 23 to 36%. One of our targets (NGC346-013) is especially interesting with a massive, apparently hotter, less luminous secondary component.