988 resultados para GHZ


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Das Institut für Kernphysik der Universität Mainz betreibt seit 1990 eine weltweit einzigartige Beschleunigeranlage für kern- und teilchenphysikalische Experimente – das Mainzer Mikrotron (MAMI-B). Diese Beschleunigerkaskade besteht aus drei Rennbahn-Mikrotrons (RTMs) mit Hochfrequenzlinearbeschleunigern bei 2.45 GHz, mit denen ein quasi kontinuierlicher Elektronenstrahl von bis zu 100 μA auf 855MeV beschleunigt werden kann.rnrnIm Jahr 1999 wurde die Umsetzung der letzten Ausbaustufe – ein Harmonisches Doppelseitiges Mikrotron (HDSM, MAMI-C) – mit einer Endenergie von 1.5 GeV begonnen. Die Planung erforderte einige mutige Schritte, z.B. Umlenkmagnete mit Feldgradient und ihren daraus resultierenden strahloptischen Eigenschaften, die einen großen Einfluss auf die Longitudinaldynamik des Beschleunigers haben. Dies erforderte die Einführung der „harmonischen“ Betriebsweise mit zwei Frequenzen der zwei Linearbeschleuniger.rnrnViele Maschinenparameter (wie z.B. HF-Amplituden oder -Phasen) wirken direkt auf den Beschleunigungsprozess ein, ihre physikalischen Größen sind indes nicht immer auf einfache Weise messtechnisch zugänglich. Bei einem RTM mit einer verhältnismäßig einfachen und wohldefinierten Strahldynamik ist das im Routinebetrieb unproblematisch, beim HDSM hingegen ist schon allein wegen der größeren Zahl an Parametern die Kenntnis der physikalischen Größen von deutlich größerer Bedeutung. Es gelang im Rahmen dieser Arbeit, geeignete Methoden der Strahldiagnose zu entwickeln, mit denen diese Maschinenparameter überprüft und mit den Planungsvorgaben verglichen werden können.rnrnDa die Anpassung des Maschinenmodells an eine einzelne Phasenmessung aufgrund der unvermeidlichen Messfehler nicht immer eindeutige Ergebnisse liefert, wird eine Form der Tomographie verwendet. Der longitudinale Phasenraum wird dann in Form einer Akzeptanzmessung untersucht. Anschließend kann ein erweitertes Modell an die gewonnene Datenvielfalt angepasst werden, wodurch eine größere Signifikanz der Modellparameter erreicht wird.rnrnDie Ergebnisse dieser Untersuchungen zeigen, dass sich der Beschleuniger als Gesamtsystem im Wesentlichen wie vorhergesagt verhält und eine große Zahl unterschiedlicher Konfigurationen zum Strahlbetrieb möglich sind – im Routinebetrieb wird dies jedoch vermieden und eine bewährte Konfiguration für die meisten Situationen eingesetzt. Das führt zu einer guten Reproduzierbarkeit z.B. der Endenergie oder des Spinpolarisationswinkels an den Experimentierplätzen.rnrnDie Erkenntnisse aus diesen Untersuchungen wurden teilweise automatisiert, so dass nun den Operateuren zusätzliche und hilfreiche Diagnose zur Verfügung steht, mit denen der Maschinenbetrieb noch zuverlässiger durchgeführt werden kann.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In questo lavoro di tesi si studia un processo sperimentale necessario alla realizza- zione di un esperimento di Fisica Atomica. L’attivit`a svolta consiste nell’ottimizzazione dei paramentri di un algoritmo di con- trollo PI (proporzionale-integrale) atto a stabilizzare la temperatura di un Diodo Laser entro 1mK. Nella branca dell’Ottica Non Lineare (dove la polarizzazione del mezzo ha una rispo- sta non lineare al campo elettrico) si possono presentare casi in cui la birifrangenza del mezzo ha una forte dipendenza dalla temperatura. Questa pu o ` essere control- lata per il raggiungimento delle condizioni di phase matching. Le fluttuazioni di temperatura possono minare tramite la dilatazione termica la precisione di una ca- vit`a Fabry-Perot, utilizzata per controllare e misurare la lunghezza d’onda della luce, dato che nominalmente ∆ν/ν = − ∆L/L. Negli esperimenti di Laser Cooling infi- ne si lavora spesso con transizioni la cui larghezza naturale Γ ∼ 1MHz , mentre la frequenza di un laser pu o ́ dipendere dalla temperatura con coefficienti tipicamente dell’ordine del GHz/K. Questa stabilizzazione risulta dunque fondamentale per una vasta classe di esperi- menti nei quali le derive termiche possono influenzare drammaticamente il processo di misura. La tesi, in particolare, si apre con un capitolo nel quale si tratta brevemente il con- testo matematico di riferimento per i sistemi di controllo a retroazione. Tra questi e ` di particolare interesse la regolazione proporzionale-integrale. Il secondo capitolo si concentra sulla caratterizzazione del sistema in oggetto al fine di trovare la sua funzione di trasferimento ad anello aperto. Nel terzo capitolo infine, si utilizzano gli strumenti matematici descritti precedente- mente per ottimizzare i parametri del regolatore e si discutono i risultati ottenuti e le misure finali.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extended cluster radio galaxies show different morphologies com- pared to those found isolated in the field. Indeed, symmetric double radio galaxies are only a small percentage of the total content of ra- dio loud cluster galaxies, which show mainly tailed morphologies (e.g. O’Dea & Owen, 1985). Moreover, cluster mergers can deeply affect the statistical properties of their radio activity. In order to better understand the morphological and radio activity differences of the radio galaxies in major mergeing and non/tidal-merging clusters, we performed a multifrequency study of extended radio galax- ies inside two cluster complexes, A3528 and A3558. They belong to the innermost region of the Shapley Concentration, the most massive con- centration of galaxy clusters (termed supercluster) in the local Universe, at average redshift z ≈ 0.043. We analysed low frequency radio data performed at 235 and 610 MHz with Giant Metrewave Radio Telescope (GMRT) and we combined them with proprietary and literature observations, in order to have a wide frequency range (150 MHz to 8.4 GHz) to perform the spectral analysis. The low frequency images allowed us to carry out a detailed study of the radio tails and diffuse emission found in some cases. The results in the radio band were also qualitatively compared with the X-ray information coming from XMM-Newton observations, in order to test the interaction between radio galaxies and cluster weather. We found that the brightest central galaxies (BCGs) in the A3528 cluster complex are powerful and present substantial emission from old relativistic plasma characterized by a steep spectrum (α > 2). In the light of observational pieces of evidence, we suggest they are possible re-started radio galaxies. On the other hand, the tailed radio galaxies trace the host galaxy motion with respect to the ICM, and our find- ings is consistent with the dynamical interpretation of a tidal interaction (Gastaldello et al. 2003). On the contrary, the BCGs in the A3558 clus- ter complex are either quiet or very faint radio galaxies, supporting the hypothesis that clusters mergers quench the radio emission from AGN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Negli ultimi anni, la popolazione è stata esposta a vari tipi di campi elettromagnetici generati da strumentazioni elettroniche e dispositivi di telecomunicazione. In questa tesi, si valutano SAR ed effetti termici prodotti da tre antenne patch a radiofrequenza sia su Cheratinociti (cellule dell'epidermide) in vitro che sull'epidermide umana in vivo caratterizzata in un modello multistrato contenente tessuti biologici. Le antenne progettate hanno frequenze di risonanza di 1.8 e 2.4 GHz, tipiche delle bande utilizzate rispettivamente da LTE (Long Term Evolution, la più recente evoluzione degli standard di telefonia mobile cellulare) e dalle moderne tecnologie Wi-Fi, e di 60 GHz, propria delle cosiddette onde millimetriche. Vengono valutati quindi il SAR (Specific Absorption Rate, grandezza che fornisce una misura dell'assorbimento delle onde da parte dei tessuti biologici) e le variazioni di temperatura prodotte dall'applicazione del campo elettromagnetico: ciò viene realizzato attraverso l'equazione del calore stazionaria e, nel caso dell'epidermide in vivo, con la Bioheat Equation, che contempla anche la circolazione sanguigna ed il calore generato nei processi metabolici che avvengono nell'organismo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper a new 22 GHz water vapor spectro-radiometer which has been specifically designed for profile measurement campaigns of the middle atmosphere is presented. The instrument is of a compact design and has a simple set up procedure. It can be operated as a standalone instrument as it maintains its own weather station and a calibration scheme that does not rely on other instruments or the use of liquid nitrogen. The optical system of MIAWARA-C combines a choked gaussian horn antenna with a parabolic mirror which reduces the size of the instrument in comparison with currently existing radiometers. For the data acquisition a correlation receiver is used together with a digital cross correlating spectrometer. The complete backend section, including the computer, is located in the same housing as the instrument. The receiver section is temperature stabilized to minimize gain fluctuations. Calibration of the instrument is achieved through a balancing scheme with the sky used as the cold load and the tropospheric properties are determined by performing regular tipping curves. Since MIAWARA-C is used in measurement campaigns it is important to be able to determine the elevation pointing in a simple manner as this is a crucial parameter in the calibration process. Here we present two different methods; scanning the sky and the Sun. Finally, we report on the first spectra and retrieved water vapor profiles acquired during the Lapbiat campaign at the Finnish Meteorological Institute Arctic Research Centre in Sodankylä, Finland. The performance of MIAWARA-C is validated here by comparison of the presented profiles against the equivalent profiles from the Microwave Limb Sounder on the EOS/Aura satellite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the recent years chirped-pulse, Fourier-transform microwave (CP-FTMW) spectrometers have chan- ged the scope of rotational spectroscopy. The broad frequency and large dynamic range make possible structural determinations in molecular systems of increasingly larger size from measurements of heavy atom (13C, 15N, 18O) isotopes recorded in natural abundance in the same spectrum as that of the parent isotopic species. The design of a broadband spectrometer operating in the 2–8 GHz frequency range with further improvements in sensitivity is presented. The current CP-FTMW spectrometer performance is benchmarked in the analyses of the rotational spectrum of the water heptamer, (H2O)7, in both 2– 8 GHz and 6–18 GHz frequency ranges. Two isomers of the water heptamer have been observed in a pulsed supersonic molecular expansion. High level ab initio structural searches were performed to pro- vide plausible low-energy candidates which were directly compared with accurate structures provided from broadband rotational spectra. The full substitution structure of the most stable species has been obtained through the analysis of all possible singly-substituted isotopologues (H218O and HDO), and a least-squares rm(1) geometry of the oxygen framework determined from 16 different isotopic species compares with the calculated O–O equilibrium distances at the 0.01 Å level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the recent years chirped-pulse, Fourier-transform microwave (CP-FTMW) spectrometers have changed the scope of rotational spectroscopy. The broad frequency and large dynamic range make possible structural determinations in molecular systems of increasingly larger size from measurements of heavy atom (C-13, N-15, O-18) isotopes recorded in natural abundance in the same spectrum as that of the parent isotopic species. The design of a broadband spectrometer operating in the 2-8 GHz frequency range with further improvements in sensitivity is presented. The current CP-FTMW spectrometer performance is benchmarked in the analyses of the rotational spectrum of the water heptamer, (H2O)(7), in both 2-8 GHz and 6-18 GHz frequency ranges. Two isomers of the water heptamer have been observed in a pulsed supersonic molecular expansion. High level ab initio structural searches were performed to provide plausible low-energy candidates which were directly compared with accurate structures provided from broadband rotational spectra. The full substitution structure of the most stable species has been obtained through the analysis of all possible singly-substituted isotopologues ((H2O)-O-18 and HDO), and a least-squares r(m)((1)) geometry of the oxygen framework determined from 16 different isotopic species compares with the calculated O-O equilibrium distances at the 0.01 angstrom level. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the analysis of the SI So rotational band contours of jet-cooled 5-methyl-2-hydroxypyrimidine (5M2HP), the enol form of deoxythymine. Unlike thymine, which exhibits a structureless spectrum, the vibronic spectrum of 5M2HP is well structured, allowing us to determine the rotational constants and the methyl group torsional barriers in the S-0 and S-1 states. The 0(0)(0), 6a(0)(1), 6b(0)(1), and 14(0)(1) band contours were measured at 900 MHz (0.03 cm(-1)) resolution using mass-specific two-color resonant two-photon ionization (2C-R2PI) spectroscopy. All four bands are polarized perpendicular to the pyrimidine plane (>90% c type), identifying the S-1 <- S-0 excitation of 5M2HP as a 1n pi* transition. All contours exhibit two methyl rotor subbands that arise from the lowest 5-methyl torsional states 0A '' and 1E ''. The S-0 and S-1 state torsional barriers were extracted from fits to the torsional subbands. The 3-fold barriers are V-3 '' = 13 cm(-1) and V3' = SI cm(-1); the 6-fold barrier contributions V-6 '' and V-6' are in the range of 2-3 cm(-1) and are positive in both states. The changes of A, B, and C rotational constants upon S-1 <- S-0 excitation were extracted from the contours and reflect an "anti-quinoidal" distortion. The 0(0)(0) contour can only be simulated if a 3 GHz Lorentzian line shape is included, which implies that the S-1(1n pi*) lifetime is similar to 55 ps. For the 6a(0)(1) and 6b(0)(1) bands, the Lorentzian component increases to 5.5 GHz, reflecting a lifetime decrease to similar to 30 ps. The short lifetimes are consistent with the absence of fluorescence from the 1n pi* state. Combining these measurements with the previous observation of efficient intersystem crossing (ISC) from the Si state to a long-lived T-1((3)n pi*) state that lies similar to 2200 cm(-1) below [S. Lobsiger, S. et al. Phys. Chem. Chem. Phys. 2010, 12, 5032] implies that the broadening arises from fast intersystem crossing with k(ISC) approximate to 2 x 10(10) s(-1). In comparison to 5-methylpyrimidine, the ISC rate is enhanced by at least 10 000 by the additional hydroxy group in position 2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the wind radiometer WIRA, a new ground-based microwave Doppler-spectro-radiometer specifically designed for the measurement of middle-atmospheric horizontal wind by observing ozone emission spectra at 142.17504 GHz. Currently, wind speeds in five levels between 30 and 79 km can be retrieved which makes WIRA the first instrument able to continuously measure horizontal wind in this altitude range. For an integration time of one day the measurement error on each level lies at around 25 m s−1. With a planned upgrade this value is expected to be reduced by a factor of 2 in the near future. On the altitude levels where our measurement can be compared to wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF) very good agreement in the long-term statistics as well as in short time structures with a duration of a few days has been found. WIRA uses a passive double sideband heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen which makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance. In the present paper, a description of the instrument is given, and the techniques used for the wind retrieval based on the determination of the Doppler shift of the measured atmospheric ozone emission spectra are outlined. Their reliability was tested using Monte Carlo simulations. Finally, a time series of 11 months of zonal wind measurements over Bern (46°57′ N, 7°26′ E) is presented and compared to ECMWF wind data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a method for DRR generation as well as for volume gradients projection using hardware accelerated 2D texture mapping and accumulation buffering and demonstrates its application in 2D-3D registration of X-ray fluoroscopy to CT images. The robustness of the present registration scheme are guaranteed by taking advantage of a coarse-to-fine processing of the volume/image pyramids based on cubic B-splines. A human cadaveric spine specimen together with its ground truth was used to compare the present scheme with a purely software-based scheme in three aspects: accuracy, speed, and capture ranges. Our experiments revealed an equivalent accuracy and capture ranges but with much shorter registration time with the present scheme. More specifically, the results showed 0.8 mm average target registration error, 55 second average execution time per registration, and 10 mm and 10° capture ranges for the present scheme when tested on a 3.0 GHz Pentium 4 computer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bluetooth wireless technology is a robust short-range communications system designed for low power (10 meter range) and low cost. It operates in the 2.4 GHz Industrial Scientific Medical (ISM) band and it employs two techniques for minimizing interference: a frequency hopping scheme which nominally splits the 2.400 - 2.485 GHz band in 79 frequency channels and a time division duplex (TDD) scheme which is used to switch to a new frequency channel on 625 μs boundaries. During normal operation a Bluetooth device will be active on a different frequency channel every 625 μs, thus minimizing the chances of continuous interference impacting the performance of the system. The smallest unit of a Bluetooth network is called a piconet, and can have a maximum of eight nodes. Bluetooth devices must assume one of two roles within a piconet, master or slave, where the master governs quality of service and the frequency hopping schedule within the piconet and the slave follows the master’s schedule. A piconet must have a single master and up to 7 active slaves. By allowing devices to have roles in multiple piconets through time multiplexing, i.e. slave/slave or master/slave, the Bluetooth technology allows for interconnecting multiple piconets into larger networks called scatternets. The Bluetooth technology is explored in the context of enabling ad-hoc networks. The Bluetooth specification provides flexibility in the scatternet formation protocol, outlining only the mechanisms necessary for future protocol implementations. A new protocol for scatternet formation and maintenance - mscat - is presented and its performance is evaluated using a Bluetooth simulator. The free variables manipulated in this study include device activity and the probabilities of devices performing discovery procedures. The relationship between the role a device has in the scatternet and it’s probability of performing discovery was examined and related to the scatternet topology formed. The results show that mscat creates dense network topologies for networks of 30, 50 and 70 nodes. The mscat protocol results in approximately a 33% increase in slaves/piconet and a reduction of approximately 12.5% of average roles/node. For 50 node scenarios the set of parameters which creates the best determined outcome is unconnected node inquiry probability (UP) = 10%, master node inquiry probability (MP) = 80% and slave inquiry probability (SP) = 40%. The mscat protocol extends the Bluetooth specification for formation and maintenance of scatternets in an ad-hoc network.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study is based on experimental work conducted in alpine snow. We made microwave radiometric and near-infrared reflectance measurements of snow slabs under different experimental conditions. We used an empirical relation to link near-infrared reflectance of snow to the specific surface area (SSA), and converted the SSA into the correlation length. From the measurements of snow radiances at 21 and 35 GHz , we derived the microwave scattering coefficient by inverting two coupled radiative transfer models (the sandwich and six-flux model). The correlation lengths found are in the same range as those determined in the literature using cold laboratory work. The technique shows great potential in the determination of the snow correlation length under field conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A planar-spiral antenna to be used in an ultrawideband (UWB) radar system for heart activity monitoring is presented. The antenna, named “twin,” is constituted by two spiral dipoles in a compact structure. The reflection coefficient at the feed point of the dipoles is lower than −8 dB over the 3–12 GHz band, while the two-dipoles coupling is about −20 dB. The radiated beam is perpendicular to the plane of the spiral, so the antenna is wearable and it may be an optimal radiator for a medical UWB radar for heart rate detection. The designed antenna has been also used to check some hypotheses about the UWB radar heart activity detection mechanism. The radiation impedance variation, caused by the thorax vibrations associated with heart activity, seems to be the most likely explanation of the UWB radar operation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High reflective materials in the microwave region play a very important role in the realization of antenna reflectors for a broad range of applications, including radiometry. These reflectors have a characteristic emissivity which needs to be characterized accurately in order to perform a correct radiometric calibration of the instrument. Such a characterization can be performed by using open resonators, waveguide cavities or by radiometric measurements. The latter consists of comparative radiometric observations of absorbers, reference mirrors and the sample under test, or using the cold sky radiation as a direct reference source. While the first two mentioned techniques are suitable for the characterization of metal plates and mirrors, the latter has the advantages to be also applicable to soft materials. This paper describes how, through this radiometric techniques, it is possible to characterize the emissivity of the sample relative to a reference mirror and how to characterize the absolute emissivity of the latter by performing measurements at different incident angles. The results presented in this paper are based on our investigations on emissivity of a multilayer insulation material (MLI) for space mission, at the frequencies of 22 and 90 GHz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the design of a submillimeter-wave mixer based on electromagnetic band gap (EBG) technology and using subharmonic local oscillator (LO) injection. The indicated device converts an incoming submilimeter wavelength signal into a 1-5 GHz intermediate frequency (IF) signal by mixing it with a subharmonic LO signal. The mixer consists of a dual-band receiver and two coplanar stripline (CPS) filters, collocated on top of a three-dimensional (3-D) EBG structure. A four-element array of the proposed receivers was designed, fabricated and tested. The configuration demonstrated reasonable performance: conversion loss below 8 dB and noise temperature below 3000 K. The presented concept can be used for higher frequencies, provided the availability of sufficiently powerful LO sources.