967 resultados para GERMLINE MUTATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Cystic fibrosis (CF) is the most prevalent lethal autosomal recessive disease with a broad spectrum of phenotypes. Mutation of ΔF508 in the CFTR gene is the most important and lethal mutation in CF, which contains 70% of all predisposing mutations for CF worldwide. Objectives: Determining frequency of genotypes with ΔF508 mutation in CFTR gene, and evaluation of correlation between genotype and phenotype of Iranian patients with CF. Patients and Methods: Thirty six patients were included in this cross sectional study. ΔF508 mutations in both alleles of the CFTR gene were checked. Results: Among 36 pediatric patients, ΔF508 mutation was detected in 9 (25%) patients; 2 patients were heterozygous, and 7 patients homozygous for this mutation. From overall 72 tracked alleles, 11 (15.2%) were found to have ΔF508 mutations. Differences in prevalence of dyspnea and bronchiectasis were significant in homozygote group, compared with non-mutated group for ΔF508. Conclusions: It seems that more ΔF508 mutated alleles lead to more severe symptoms of CF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: ABCA3 glycoprotein belongs to the ATP-binding cassette (ABC) superfamily of transporters, which utilize the energy derived from hydrolysis of ATP for the translocation of a wide variety of substrates across the plasma membrane. Mutations in the ABCA3 gene are knowingly causative for fatal surfactant deficiency, particularly respiratory distress syndrome (RDS) in term babies. Case Presentation: In this study, Sanger sequencing of the whole ABCA3 gene (NCBI NM_001089) was performed in a neonatal boy with severe RDS. A homozygous mutation has been identified in the patient. Parents were heterozygous for the same missense mutation GGA > AGA at position 202 in exon 6 of the ABCA3 gene (c.604G > A; p.G202R). Furthermore, 70 normal individuals have been analyzed for the mentioned change with negative results. Conclusions: Regarding Human Genome Mutation Database (HGMD) and other literature recherche, the detected change is a novel mutation and has not been reported before. Bioinformatics mutation predicting tools prefer it as pathogenic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Mutations in the leucine-rich repeat kinase 2 gene (LRRK2 or Dardarin) are considered to be a common cause of autosomal dominant and sporadic Parkinson´s disease, but the prevalence of these mutations varies among populations. Objective: To analyzed the frequency of the LRRK2 p.G2019S mutation (c.6055G>A transition) in a sample of Colombian patients. Methods: In the present study we have analyzed the frequency of the LRRK2 p.G2019S mutation in 154 patients with familial or sporadic Parkinson Disease, including early and late onset patients, and 162 normal controls. Results: Our results show occurrence of this mutation in two cases (2/154, 1.3%) with classical Parkinson´s signs, and one completely asymptomatic control (1/162, 0.6%). Conclusion: The p.G2019S mutation is not an important causal factor of Parkinson Disease in Colombia having similar frequencies to those reported in other Latin American populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Mutations of GDAP1 gene cause autosomal dominant and autosomal recessive Charcot-Marie-Tooth disease and more than 40 different mutations have been reported. The recessive Q163X mutation has been described in patients of Spanish ancestry, and a founder mutation in South American patients, originating in Spain has been demonstrated. Objective: We describe physical and histological features, and the molecular impact of mutation Q163X in a Colombian family. Methods: We report two female patients, daughters of consanguineous parents, with onset of symptoms within the first two years of life, developing severe functional impairment, without evidence of dysmorphic features, hoarseness or diaphragmatic paralysis. Electrophysiology tests showed a sensory and motor neuropathy with axonal pattern. Sequencing of GDAP1 gene was requested and the study identified a homozygous point mutation (c.487 C>T) in exon 4, resulting in a premature stop codon (p.Q163X). This result confirms the diagnosis of Charcot-Marie-Tooth disease, type 4A. Results: The patients were referred to Physical Medicine and Rehabilitation service, in order to be evaluated for ambulation assistance. They have been followed by Pulmonology service, for pulmonary function assessment and diaphragmatic paralysis evaluation. Genetic counseling was offered. The study of the genealogy of the patient, phenotypic features, and electrophysiological findings must be included as valuable tools in the clinical approach of the patient with Charcot-Marie-Tooth disease, in order to define a causative mutation. In patients of South American origin, the presence of GDAP1 gene mutations should be considered, especially the Q163X mutation, as the cause of CMT4A disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Mutations of GDAP1 gene cause autosomal dominant and autosomal recessive Charcot-Marie-Tooth disease and more than 40 different mutations have been reported. The recessive Q163X mutation has been described in patients of Spanish ancestry, and a founder mutation in South American patients, originating in Spain has been demonstrated. Objective: we describe physical and histological features, and the molecular impact of mutation Q163X in a Colombian family. Methods: We report two female patients, daughters of consanguineous parents, with onset of symptoms within the first two years of life, developing severe functional impairment, without evidence of dysmorphic features, hoarseness or diaphragmatic paralysis. Electrophysiology tests showed a sensory and motor neuropathy with axonal pattern. Sequencing of GDAP1 gene was requested and the study identified a homozygous point mutation (c.487 C>T) in exon 4, resulting in a premature stop codon (p.Q163X). This result confirms the diagnosis of Charcot-Marie-Tooth disease, type 4A. Results: The patients were referred to Physical Medicine and Rehabilitation service, in order to be evaluated for ambulation assistance. They have been followed by Pulmonology service, for pulmonary function assessment and diaphragmatic paralysis evaluation. Genetic counseling was offered. The study of the genealogy of the patient, phenotypic features, and electrophysiological findings must be included as valuable tools in the clinical approach of the patient with Charcot-Marie-Tooth disease, in order to define a causative mutation. In patients of South American origin, the presence of GDAP1 gene mutations should be considered, especially the Q163X mutation, as the cause of CMT4A disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sexual reproduction is the main reproductive strategy of the overwhelming majority of eukaryotes. This suggests that the last eukaryotic common ancestor was able to reproduce sexually. Sexual reproduction reflects the ability to perform meiosis, and ultimately generating gametes, which are cells that carry recombined half sets of the parental genome and are able to fertilize. These functions have been allocated to a highly specialized cell lineage: the germline. Given its significant evolutionary conservation, it is to be expected that the germline programme shares common molecular bases across extremely divergent eukaryotic species. In the present review, we aim to identify the unifying principles of male germline establishment and development by comparing two very disparate kingdoms: plants and animals. We argue that male meiosis defines two temporally regulated gene expression programmes: the first is required for meiotic commitment, and the second is required for the acquisition of fertilizing ability. Small RNA pathways are a further key communality, ultimately ensuring the epigenetic stability of the information conveyed by the male germline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insertion and/or deletion mutations of the CALR gene have recently been demonstrated to be the second most common driver mutations in the myeloproliferative neoplasms (MPNs) of essential thrombocythemia (ET) and primary myelofibrosis (PMF). Given the diagnostic and emerging prognostic significance of these mutations, in addition to the geographical heterogeneity reported, the incidence of CALR mutations was determined in an Irish cohort of patients with MPNs with a view to incorporate this analysis into a prospective screening program. A series of 202 patients with known or suspected ET and PMF were screened for the presence of CALR mutations. CALR mutations were detected in 58 patients. Type 1 and Type 1-like deletion mutations were the most common (n = 40) followed by Type 2 and Type 2-like insertion mutations (n = 17). The CALR mutation profile in Irish ET and PMF patients appears similar to that in other European populations. Establishment of this mutational profile allows the introduction of a rational, molecular diagnostic algorithm in cases of suspected ET and PMF that will improve clinical management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé : La phase haploïde de la spermatogenèse (spermiogenèse) est caractérisée par une modification importante de la structure de la chromatine et un changement de la topologie de l’ADN du spermatide. Les mécanismes par lesquels ce changement se produit ainsi que les protéines impliquées ne sont pas encore complètement élucidés. Mes travaux ont permis d’établir la présence de cassures bicaténaires transitoires pendant ce remodelage par l’essai des comètes et l’électrophorèse en champ pulsé. En procédant à des immunofluorescences sur coupes de tissus et en utilisant un extrait nucléaire hautement actif, la présence de topoisomérases ainsi que de marqueurs de systèmes de réparation a été confirmée. Les protéines de réparation identifiées font partie de systèmes sujets à l’erreur, donc cette refonte structurale de la chromatine pourrait être génétiquement instable et expliquer le biais paternel observé pour les mutations de novo dans de récentes études impliquant des criblages à haut débit. Une technique permettant l’immunocapture spécifique des cassures bicaténaires a été développée et appliquée sur des spermatides murins représentant différentes étapes de différenciation. Les résultats de séquençage à haut débit ont montré que les cassures bicaténaires (hotspots) de la spermiogenèse se produisent en majorité dans l’ADN intergénique, notamment dans les séquences LINE1, l’ADN satellite et les répétions simples. Les hotspots contiennent aussi des motifs de liaisons des protéines des familles FOX et PRDM, dont les fonctions sont entre autres de lier et remodeler localement la chromatine condensée. Aussi, le motif de liaison de la protéine BRCA1 se trouve enrichi dans les hotspots de cassures bicaténaires. Celle-ci agit entre autres dans la réparation de l’ADN par jonction terminale non-homologue (NHEJ) et dans la réparation des adduits ADN-topoisomérase. De façon remarquable, le motif de reconnaissance de la protéine SPO11, impliquée dans la formation des cassures méiotiques, a été enrichi dans les hotspots, ce qui suggère que la machinerie méiotique serait aussi utilisée pendant la spermiogenèse pour la formation des cassures. Enfin, bien que les hotspots se localisent plutôt dans les séquences intergéniques, les gènes ciblés sont impliqués dans le développement du cerveau et des neurones. Ces résultats sont en accord avec l’origine majoritairement paternelle observée des mutations de novo associées aux troubles du spectre de l’autisme et de la schizophrénie et leur augmentation avec l’âge du père. Puisque les processus du remodelage de la chromatine des spermatides sont conservés dans l’évolution, ces résultats suggèrent que le remodelage de la chromatine de la spermiogenèse représente un mécanisme additionnel contribuant à la formation de mutations de novo, expliquant le biais paternel observé pour certains types de mutations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulmonary arterial hypertension (PAH) is a progressive disease of the small pulmonary arteries, characterised by pulmonary vascular remodelling due to excessive proliferation and resistance to apoptosis of pulmonary artery endothelial cells (PAECs) and pulmonary artery smooth muscle cells (PASMCs). The increased pulmonary vascular resistance and elevated pulmonary artery pressures result in right heart failure and premature death. Germline mutations of the bone morphogenetic protein receptor-2 (bmpr2) gene, a receptor of the transforming growth factor beta (TGF-β) superfamily, account for approximately 75%-80% of the cases of heritable form of PAH (HPAH) and 20% of sporadic cases or idiopathic PAH (IPAH). IPAH patients without known bmpr2 mutations show reduced expression of BMPR2. However only ~ 20% of bmpr2-mutation carriers will develop the disease, due to an incomplete penetrance, thus the need for a ‘second hit’ including other genetic and/or environmental factors is accepted. Diagnosis of PAH occurs most frequently when patients have reached an advanced stage of disease. Although modern PAH therapies can markedly improve a patient’s symptoms and slow the rate of clinical deterioration, the mortality rate from PAH remains unacceptably high. Therefore, the development of novel therapeutic approaches is required for the treatment of this multifaceted disease. Noncoding RNAs (ncRNAs) include microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). MiRNAs are ~ 22 nucleotide long and act as negative regulators of gene ex-pression via degradation or translational inhibition of their target mRNAs. Previous studies showed extensive evidence for the role of miRNAs in the development of PAH. LncRNAs are transcribed RNA molecules greater than 200 nucleotides in length. Similar to classical mRNA, lncRNAs are translated by RNA polymerase II and are generally alternatively spliced and polyadenylated. LncRNAs are highly versatile and function to regulate gene expression by diverse mechanisms. Unlike miRNAs, which exhibit well-defined actions in negatively regulating gene expression via the 3’-UTR of mRNAs, lncRNAs play more diverse and unpredictable regulatory roles. Although a number of lncRNAs have been intensively investigated in the cancer field, studies of the role of lncRNAs in vascular diseases such as PAH are still at a very early stage. The aim of this study was to investigate the involvement of specific ncRNAs in the development of PAH using experimental animal models and cell culture. The first ncRNA we focused on was miR-143, which is up-regulated in the lung and right ventricle tissues of various animal models of PH, as well as in the lungs and PASMCs of PAH patients. We show that genetic ablation of miR-143 is protective against the development of chronic hypoxia induced PH in mice, assessed via measurement of right ventricular systolic pressure (RVSP), right ventricular hypertrophy (RVH) and pulmonary vascular remodelling. We further report that knockdown of miR-143-3p in WT mice via anti-miR-143-3p administration prior to exposure of mice to chronic hypoxia significantly decreases certain indices of PH (RVSP) although no significant changes in RVH and pulmo-nary vascular remodelling were observed. However, a reversal study using antimiR-143-3p treatment to modulate miR-143-3p demonstrated a protective effect on RVSP, RVH, and muscularisation of pulmonary arteries in the mouse chronic hypoxia induced PH model. In vitro experiments showed that miR-143-3p overexpression promotes PASMC migration and inhibits PASMC apoptosis, while knockdown miR-143-3p elicits the opposite effect, with no effects observed on cellular proliferation. Interestingly, miR-143-3p-enriched exosomes derived from PASMCs mediated cell-to-cell communication between PASMCs and PAECs, contributing to the pro-migratory and pro-angiogenic phenotype of PAECs that underlies the pathogenesis of PAH. Previous work has shown that miR-145-5p expression is upregulated in the chronic hypoxia induced mouse model of PH, as well as in PAH patients. Genetic ablation and pharmacological inhibition (subcutaneous injection) of miR-145-5p exert a protective against the de-velopment of PAH. In order to explore the potential for alternative, more lung targeted delivery strategies, miR-145-5p expression was inhibited in WT mice using intranasal-delivered antimiR-145-5p both prior to and post exposure to chronic hypoxia. The decreased expression of miR-145-5p in lung showed no beneficial effect on the development of PH compared with control antimiRNA treated mice exposed to chronic hypoxia. Thus, miR-143-3p modulated both cellular and exosome-mediated responses in pulmonary vascular cells, while the inhibition of miR-143-3p prevented the development of experimental pulmonary hypertension. We focused on two lncRNAs in this project: Myocardin-induced Smooth Muscle Long noncoding RNA, Inducer of Differentiation (MYOSLID) and non-annotated Myolnc16, which were identified from RNA sequencing studies in human coronary artery smooth muscle cells (HCASMCs) that overexpress myocardin. MYOSLID was significantly in-creased in PASMCs from patients with IPAH compared to healthy controls and increased in circulating endothelial progenitor cells (EPCs) from bmpr2 mutant PAH patients. Exposure of PASMCs to hypoxia in vitro led to a significant upregulation in MYOSLID expres-sion. MYOSLID expression was also induced by treatment of PASMC with BMP4, TGF-β and PDGF, which are known to be triggers of PAH in vitro. Small interfering RNA (siR-NA)-mediated knockdown MYOSLID inhibited migration and induced cell apoptosis without affecting cell proliferation and upregulated several genes in the BMP pathway in-cluding bmpr1α, bmpr2, id1, and id3. Modulation of MYOSLID also affected expression of BMPR2 at the protein level. In addition, MYOSLID knockdown affected the BMP-Smad and BMP-non-Smad signalling pathways in PASMCs assessed by phosphorylation of Smad1/5/9 and ERK1/2, respectively. In PAECs, MYOSLID expression was also induced by hypoxia exposure, VEGF and FGF2 treatment. In addition, MYOSLID knockdown sig-nificantly decreased the proliferation of PAECs. Thus, MYOSLID may be a novel modulator in pulmonary vascular cell functions, likely through the BMP-Smad and –non-Smad pathways. Treatment of PASMCs with inflammatory cytokines (IL-1 and TNF-α) significantly in-duced the expression of Myolnc16 at a very early time point. Knockdown of Myolnc16 in vitro decreased the expression of il-6, and upregulated the expression of il-1 and il-8 in PASMCs. Moreover, the expression levels of chemokines (cxcl1, cxcl6 and cxcl8) were sig-nificantly decreased with Myolnc16 knockdown. In addition, Myolnc16 knockdown decreased the MAP kinase signalling pathway assessed by phosphorylation of ERK1/2 and p38 MAPK and inhibited cell migration and proliferation in PASMCs. Thus, Myolnc16 may a novel modulator of PASMCs functions through anti-inflammatory signalling pathways. In summary, in this thesis we have demonstrated how miR-143-3p plays a protective role in the development of PH both in vivo animal models and patients, as well as in vitro cell cul-ture. Moreover, we have showed the role of two novel lncRNAs in pulmonary vascular cells. These ncRNAs represent potential novel therapeutic targets for the treatment of PAH with further work addressing to investigate the target genes, and the pathways modulated by these ncRNAs during the development of PAH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le présent volume est l’aboutissement éditorial d’un travail sur les patrimoines de l’ingénierie qui s’était initialement concrétisé par la journée d’études internationale du 6 juillet 2012, à l’Université de Paris I Panthéon-Sorbonne. Cette journée a été organisée dans le cadre des activités des jeunes chercheurs et doctorants du master Erasmus Mundus TPTI, c’est-à-dire « Techniques, patrimoine, territoires de l’industrie », qui réunit un consortium universitaire international autour de ces questions, en offrant d’intéressantes opportunités d’échanges aux jeunes chercheurs. Les grands ouvrages de génie civil ont eu d’importantes conséquences paysagères et sociales. La mutation du paysage est aussi en lien direct avec la mise en place des grands systèmes techniques et avec l’aménagement des territoires de l’industrie. Ce patrimoine technique suscite un intérêt croissant. Le présent volume interroge les questions de sa protection, sa préservation et de sa valorisation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Un regard pluriel sur le patrimoine de l’ingénierie : savoir technique, aménagement du territoire et mutation du paysage Le patrimoine de l’ingénierie : au-delà des travaux publics L’histoire et le patrimoine de l’ingénierie : les enseignements du passé pour améliorer le travail des ingénieurs formés dans le temps présent Approches diversifiées au patrimoine de l’ingénierie

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Metazoa, the germline represents the cell lineage devoted to transmission of genetic heredity across generations. Its functions intuitively evoke the crucial roles that it plays in the development of a new organism and in the evolution of the species. Germline establishment is tightly tied to animal multicellularity itself, in which the complex differentiation of cell lineages is favoured by the confinement of totipotency in specific cell populations. In the present thesis, I addressed the subject of germline characterization in animals through different approaches, in an attempt to cover different sides and scales. First, I investigated the extent and nature of shared differentially transcribed molecular factors in 10 different species germline-related lineages. I observed that newly evolved genes are less likely to be involved in germline-related mechanisms and that the mostly shared transcriptional signal across the species considered was the upregulation of genes associated to proper DNA replication, instead of the expected transcriptional and post-transcriptional regulation, that apparently have a higher level of lineage-specificity. I then focused on the evolutionary history of Tudor domain containing proteins, a gene family that underwent germline-associated expansions in animals. Using data from 24 holozoan phyla, I could confirm the previously proposed evolution of the Tudor domain secondary structure. Also, I associated lineage-specific family reductions and expansions to peculiar genomic dynamics and to the evolution of germline-associated piRNA pathway of retrotransposon silencing. Lastly, I characterized and investigated the expression of the Tudor protein TDRD7 in the clam Ruditapes philippinarum. Through immunolocalization, I could compare its expression profiles in gametogenic specimens to the previously characterized germline marker vasa. Combining results with literature, I proposed that, in this species, TDRD7 is involved in the assembly of germ granules, i.e. cytoplasmic structures associated to germline differentiation in virtually all animals, but whose assemblers can be taxon specific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The introduction of molecular criteria into the classification of diffuse gliomas has added interesting practical implications to glioma management. This has created a new clinical need for correlating imaging characteristics with glioma genotypes, also known as radiogenomics or imaging genomics. Whilst many studies have primarily focused on the use of advanced magnetic resonance imaging (MRI) techniques for radiogenomics purposes, conventional MRI sequences still remain the reference point in the study and characterization of brain tumours. Moreover, a different approach may rely on diffusion-weighted imaging (DWI) usage, which is considered a “conventional” sequence in line with recently published directions on glioma imaging. In a non-invasive way, it can provide direct insight into the microscopic physical properties of tissues. Considering that Isocitrate-Dehydrogenase gene mutations may reflect alterations in metabolism, cellularity, and angiogenesis, which may manifest characteristic features on an MRI, the identification of specific MRI biomarkers could be of great interest in managing patients with brain gliomas. My study aimed to evaluate the presence of specific MRI-derived biomarkers of IDH molecular status through conventional MRI and DWI sequences.