963 resultados para Future Direction
Resumo:
Lakes Victoria, Kyoga and Nabugabo had a similar native fish fauna of high species diversity. stocks of most of the native species declined rapidly and some completely disappeared after Nile perch was introduced and became well established. Although, overexploitation of the fish stocks, competition between introduced and native tilapiines and environmental degradation contributed to the reduction in fish stocks, predation by the Nile perch has contributed much to the recent drastic reductions in fish stock and could even drive the stocks to a total collapse. Nile perch is also currently the most important commercial species in Lakes victoria, Kyoga and Nabugabo and the stability of its stocks is important in the overall sustainability of the fisheries of these lakes. The question that was to be examined in this paper was whether the fisheries of Lakes Victoria, Kyogaand Nabugabo would stabilize and sustain production in the presence of high predation pressure by the Nile perch or whether the Nile perch would drive the fish stocks including itself to a collapse. I t was assumed that Nile perch driven changes in Lakes Victoria, Kyoga and Nabugabo would be driven to a level beyond which they would not change further. This would be followed by recovery and stability or the changes would continue to a point of collapse. It was assumed that Lake Albert represented the ideal stable state. The changes in the new habitats expected to be driven through a major change due to Nile perch predation to a stage where there would be no further changes. After this, a feedback mechanism would move the driven variable towards recovery. The variables would then stabilize and oscillate will an amplitude which approximates to what would be recorded in Lake Albert. Alternatively, the changes would proceed to a stage where the fishery would collapse. The specific hypothesis was that fish species composition and diversity, prey selection by the Nile perch and life history characteristics of the Nile perch in the new habitats would change and stabilize
Resumo:
The Tanzania part of Lake Victoria is the most important single fishery resource for the country. Past fishing practice caused disparity between the relative abundance in the catches and in the available stocks by overfishing some species while under-fishing others. Preliminary studies of distribution pattern, biomass estimates, etc, as derived from bollom trawl exploratory data, and the trend of the commercial catch statistics from 1958 to 1970, suggest that many of the commercially preferred species may not have the biotic potential 10 sustain higher yields under present ecological and fishing regimes. Haplochromis and a few other fish might be the only hope. Geographic extension of fishing to deeper waters may not be very promising as species diversificarion and fish density decline with depth. To develop and manage the fisheries, make full use of the resource and ensure economic and biological perpetuation of thc fishery, the appropriate fishing strategy cannot be properly developcd overnight.
Resumo:
EAFFRO and UNPP/LVFRP bottom trawl exploratory data have been used to describe the depth distributional pattern. relative abundance and magnitude of the demersai fishes in Lake Victoria. The results have been compared with the commercial catch estimates, and various interpretations of the trends in the annual catches and experimental biomass estimates in relation to possible future developments of the fishery have been suggested. Though it is highly desirable to develop the fishery such as by supplementary trawling, certain social and biological consequences and considerations needs to proceed in graded steps guided by several research disciplines. The past trends of the fisheries of Lake Victoria are briefly considered. Recent exploratory bottom trawl data, by EAFFRO and UNDP/LVFRP, have been used to define demersal fish stocks of Lake Victoria in terms of their magnitude, relative abundance and distribution pattern by depth. Enstence of disparity between the relative abundance of the various species in their commercial catches and in their present biomass estimates is pointed out and the various aspects associated with the necessary modification of the fishing practices are discussed. Further and continuing research of the bio-socio-economic vectors of the fishery will be necessary in order to generate the rationale of an efficient fishing regime for a rational management strategy and realistic utilization of the fishery resource.
Resumo:
The Uganda sector of Lake Victoria occupies 29,580 km2 (43%). The lake used to boast of a multi-species fishery but presently relies on three major species Lates niloticus, Oreochromis niloticus and Rastrineobola argentea. During the past decade the total fish production on the Ugandan sector increased drastically from 17,000 tonnes in 1981 to about 13,000 tonnes 1991, indicating a healthy state of the fishery. This was contributed by a combination of factors including the explosive establishment of the introduced L. niloticus which contributed 60.8% in 1991 and the increase in the number of fishing canoes from 3470 in 1988 to 8000 in 1990. Isolated fishery resources studies carried out in different areas of the lake since 1971 seem, however, to indicate contrary trends in the available stocks and, therefore, the status of the fishery. In the experimental fishery, continued decline in catch rates have been recorded. Similarly, in the commercial fishery catch per unit of effort has been considerably poor (33 kg per canoe during January - March 1992) and the average size of individual fish laRded continued to decline, obviously pointing at possible over-fishing. This, therefore, calls for further urgent research on the available stocks for proper management strategies to be formulated.
Resumo:
Experimental trawling during the period 1981/86 and analysis of past commercial catch landings, mainly in the northern portion of Lake Victoria have indicated that the standing stocks and therefore, the estimates of sustainable yields of the most important fish species have unquestionably changed since the 1969/71 comprehensive lake-wide stock assessment survey. Lake Victoria which was originally a multi-species fishery now relies on two introduced species (Lates niloticus and Oreochromis niloticus) and one indigenous cyprinid (Rastrineobola argentea). Most of the traditional fish species, including the once dominant haplochromines, have either declined or disappeared. The catch rates in the experimental trawl catches declined from 797 kg/hr in 1969/71 to 575 kg/hr in 1981 and 166 kg/hr in 1985. The contribution of L. niloticus in the trawl catch increased from 0.9% in 1981 to 95.6% in 1985 while the contribution of the haplochromines decreased from about 91% to about 1% over the same period. The mean size of the individual fish caught (particularly the Nile perch) was also on the decline. Similar trends were also observed in the commercial fishery. However, recent observations in the Lake Kyoga commercial fishery that O. niloticus has now surpassed L.niloticus in importance may create more uncertainty regarding the future trends of the fish stocks of Lake Victoria. Inspite of the above situation, developments to increasingly exploit the fish stocks of the lake for export continue to take place. A number of fish processing and/or handling plants have been established in the Jinja, Kampala and Entebbe areas of the lake. Each of these plants is capable of handling upwards of 10 tons of fish a day, the target fish being L. niloticus and O. niloticus.
Resumo:
Just under half of all energy consumption in the UK today takes place indoors, and over a quarter within our homes. The challenges associated with energy security, climate change and sustainable consumption will be overcome or lost in existing buildings. A background analysis, and the scale of the engineering challenge for the next three to four decades, is described in this paper.
Resumo:
Just under half of all energy consumption in the UK today takes place indoors, and over a quarter within our homes. The challenges associated with energy security, climate change and sustainable consumption will be overcome or lost in our existing buildings. A background analysis, and the scale of the engineering challenge for the next three to four decades, is described in this paper.
Resumo:
Bio-inspired designs can provide an answer to engineering problems such as swimming strategies at the micron or nano-scale. Scientists are now designing artificial micro-swimmers that can mimic flagella-powered swimming of micro-organisms. In an application such as lab-on-a-chip in which micro-object manipulation in small flow geometries could be achieved by micro-swimmers, control of the swimming direction becomes an important aspect for retrieval and control of the micro-swimmer. A bio-inspired approach for swimming direction reversal (a flagellum bearing mastigonemes) can be used to design such a system and is being explored in the present work. We analyze the system using a computational framework in which the equations of solid mechanics and fluid dynamics are solved simultaneously. The fluid dynamics of Stokes flow is represented by a 2D Stokeslets approach while the solid mechanics behavior is realized using Euler-Bernoulli beam elements. The working principle of a flagellum bearing mastigonemes can be broken up into two parts: (1) the contribution of the base flagellum and (2) the contribution of mastigonemes, which act like cilia. These contributions are counteractive, and the net motion (velocity and direction) is a superposition of the two. In the present work, we also perform a dimensional analysis to understand the underlying physics associated with the system parameters such as the height of the mastigonemes, the number of mastigonemes, the flagellar wave length and amplitude, the flagellum length, and mastigonemes rigidity. Our results provide fundamental physical insight on the swimming of a flagellum with mastigonemes, and it provides guidelines for the design of artificial flagellar systems.
Resumo:
In this study, the authors describe two-dimensional direction finding and signal polarisation estimation from a cylindrical conformal array consisting of directional and polarised antenna elements. Firstly, a simple and general transformation procedure, based on the mathematical framework of geometric algebra, is presented for arbitrary conformal arrays with polarised and directional antennas. Subsequently, the authors utilise the symmetry of cylindrical arrays to estimate signal parameters via rotational invariance techniques. The authors show how to iteratively estimate the azimuth and elevation angles of the incident signal, as well as its polarisation. To illustrate the versatility of this method, the results of simulations on a 3×4 cylindrical conformal array are shown and discussed. © 2012 The Institution of Engineering and Technology.
Resumo:
This paper investigates 'future-proofing' as an unexplored yet all-important aspect in the design of low-energy dwellings. It refers particularly to adopting lifecycle thinking and accommodating risks and uncertainties in the selection of fabric energy efficiency measures and low or zero-carbon technologies. Based on a conceptual framework for future-proofed design, the paper first presents results from the analysis of two 'best practice' housing developments in England; i.e., North West Cambridge in Cambridge and West Carclaze and Baal in St. Austell, Cornwall. Second, it examines the 'Energy and CO2 Emissions' part of the Code for Sustainable Homes to reveal which design criteria and assessment methods can be practically integrated into this established building certification scheme so that it can become more dynamic and future-oriented.Practical application: Future-proofed construction is promoted implicitly within the increasingly stringent building regulations; however, there is no comprehensive method to readily incorporate futures thinking into the energy design of buildings. This study has a three-fold objective of relevance to the building industry:Illuminating the two key categories of long-term impacts in buildings, which are often erroneously treated interchangeably:- The environmental impact of buildings due to their long lifecycles.- The environment's impacts on buildings due to risks and uncertainties affecting the energy consumption by at least 2050. This refers to social, technological, economic, environmental and regulatory (predictable or unknown) trends and drivers of change, such as climate uncertainty, home-working, technology readiness etc.Encouraging future-proofing from an early planning stage to reduce the likelihood of a prematurely obsolete building design.Enhancing established building energy assessment methods (certification, modelling or audit tools) by integrating a set of future-oriented criteria into their methodologies. © 2012 The Chartered Institution of Building Services Engineers.
Resumo:
This paper presents a review undertaken to understand the concept of 'future-proofing' the energy performance of buildings. The long lifecycles of the building stock, the impacts of climate change and the requirements for low carbon development underline the need for long-term thinking from the early design stages. 'Future-proofing' is an emerging research agenda with currently no widely accepted definition amongst scholars and building professionals. In this paper, it refers to design processes that accommodate explicitly full lifecycle perspectives and energy trends and drivers by at least 2050, when selecting energy efficient measures and low carbon technologies. A knowledge map is introduced, which explores the key axes (or attributes) for achieving a 'future-proofed' energy design; namely, coverage of sustainability issues, lifecycle thinking, and accommodating risks and uncertainties that affect the energy consumption. It is concluded that further research is needed so that established building energy assessment methods are refined to better incorporate future-proofing. The study follows an interdisciplinary approach and is targeted at design teams with aspirations to achieve resilient and flexible low-energy buildings over the long-term. © 2012 Elsevier Ltd.
Resumo:
Many manufacturing firms have developed a service dimension to their product portfolio. In response to this growing trend of servitisation, organisations, often involved in complex, long-lifecycle product-service system (PSS) provision, need to reconfigure their global engineering networks to support integrated PSS offerings. Drawing on parallel concepts in 'production' networks, the idea of 'location role' now becomes increasingly complex, in terms of service delivery. As new markets develop, locations in a specific region may need to grow/adapt engineering service 'competencies' along the value chain, from design and build to support and service, in order to serve future location-specific requirements and, potentially, those requirements of the overall network. The purpose of this paper is to advance understanding of how best to design complex multi-organisational engineering service networks, through extension of the 'production' network location role concept to a PSS context, capturing both traditional engineering 'design and build' and engineering 'service' requirements. Copyright © 2012 Inderscience Enterprises Ltd.
Resumo:
Flows throughout different zones of turbines have been investigated using large eddy simulation (LES) and hybrid Reynolds-averaged Navier–Stokes-LES (RANS-LES) methods and contrasted with RANS modeling, which is more typically used in the design environment. The studied cases include low and high-pressure turbine cascades, real surface roughness effects, internal cooling ducts, trailing edge cut-backs, and labyrinth and rim seals. Evidence is presented that shows that LES and hybrid RANS-LES produces higher quality data than RANS/URANS for a wide range of flows. The higher level of physics that is resolved allows for greater flow physics insight, which is valuable for improving designs and refining lower order models. Turbine zones are categorized by flow type to assist in choosing the appropriate eddy resolving method and to estimate the computational cost.