964 resultados para Fractional partial differential equations
Resumo:
A Matemática e as Ciências Farmacêuticas encontram-se relacionadas desde há muito, no entanto, foi a partir do séc. XVII, período de notável agitação cultural e científico que os métodos experimentais foram sustentados com cálculos matemáticos. Esta ciência e as técnicas de modelagem matemática tornaram-se numa ferramenta amplamente utilizada, de tal modo, que nos dias de hoje são consideradas como fundamentais na generalidade das profissões e em especial nas Ciências Farmacêuticas. Contudo, para muitos ainda não é vista como fundamental e essencial para a formação de futuros farmacêuticos. Deste modo, pretende-se demonstrar como a Matemática e as técnicas de modelagem se tornaram ao longo dos anos nesta poderosa ferramenta. Quer pelos instrumentos, quer pelas competências que nos proporcionam. Pretende-se também, com recurso aos conteúdos programáticos desta unidade curricular, avaliar se os conhecimentos, sistemas de avaliação e distribuição da carga horária são efetuados de forma homogénea pelas diferentes instituições portuguesas, públicas ou privadas que lecionam o Mestrado Integrado em Ciências Farmacêuticas. Verificou-se que a Matemática é uma ciência plena de capacidades e recursos e que estabelece uma relação interdisciplinar com as Ciências Farmacêuticas. Quer pela componente utilitária, quer pela componente formativa que proporciona. A análise dos conteúdos programáticos demonstra que apesar de serem transversais, as Universidades que não lecionam Sistemas de Equações Lineares e Equações diferenciais deveriam faze-lo e também realizarem um melhor controlo da carga horária por temática.
Resumo:
Acid mine drainage (AMD) is a widespread environmental problem associated with both working and abandoned mining operations. As part of an overall strategy to determine a long-term treatment option for AMD, a pilot passive treatment plant was constructed in 1994 at Wheal Jane Mine in Cornwall, UK. The plant consists of three separate systems, each containing aerobic reed beds, anaerobic cell and rock filters, and represents the largest European experimental facility of its kind. The systems only differ by the type of pretreatment utilised to increase the pH of the influent minewater (pH <4): lime dosed (LD), anoxic limestone drain (ALD) and lime free (LF), which receives no form of pretreatment. Historical data (1994-1997) indicate median Fe reduction between 55% and 92%, sulphate removal in the range of 3-38% and removal of target metals (cadmium, copper and zinc) below detection limits, depending on pretreatment and flow rates through the system. A new model to simulate the processes and dynamics of the wetlands systems is described, as well as the application of the model to experimental data collected at the pilot plant. The model is process based, and utilises reaction kinetic approaches based on experimental microbial techniques rather than an equilibrium approach to metal precipitation. The model is dynamic and utilises numerical integration routines to solve a set of differential equations that describe the behaviour of 20 variables over the 17 pilot plant cells on a daily basis. The model outputs at each cell boundary are evaluated and compared with the measured data, and the model is demonstrated to provide a good representation of the complex behaviour of the wetland system for a wide range of variables. (C) 2004 Elsevier B.V/ All rights reserved.
Resumo:
Approximations to the scattering of linear surface gravity waves on water of varying quiescent depth are Investigated by means of a variational approach. Previous authors have used wave modes associated with the constant depth case to approximate the velocity potential, leading to a system of coupled differential equations. Here it is shown that a transformation of the dependent variables results in a much simplified differential equation system which in turn leads to a new multi-mode 'mild-slope' approximation. Further, the effect of adding a bed mode is examined and clarified. A systematic analytic method is presented for evaluating inner products that arise and numerical experiments for two-dimensional scattering are used to examine the performance of the new approximations.
Resumo:
A mathematical model describing the main mechanistic processes involved in keratinocyte response to chromium and nickel has been developed and compared to experimental in vitro data. Accounting for the interactions between the metal ions and the keratinocytes, the law of mass action was used to generate ordinary differential equations which predict the time evolution and ion concentration dependency of keratinocyte viability, the amount of metal associated with the keratinocytes and the release of cytokines by the keratinocytes. Good agreement between model predictions and existing experimental data of these endpoints was observed, supporting the use of this model to explore physiochemical parameters that influence the toxicological response of keratinocytes to these two metals.
Resumo:
Individuals with elevated levels of plasma low density lipoprotein (LDL) cholesterol (LDL-C) are considered to be at risk of developing coronary heart disease. LDL particles are removed from the blood by a process known as receptor-mediated endocytosis, which occurs mainly in the liver. A series of classical experiments delineated the major steps in the endocytotic process; apolipoprotein B-100 present on LDL particles binds to a specific receptor (LDL receptor, LDL-R) in specialized areas of the cell surface called clathrin-coated pits. The pit comprising the LDL-LDL-R complex is internalized forming a cytoplasmic endosome. Fusion of the endosome with a lysosome leads to degradation of the LDL into its constituent parts (that is, cholesterol, fatty acids, and amino acids), which are released for reuse by the cell, or are excreted. In this paper, we formulate a mathematical model of LDL endocytosis, consisting of a system of ordinary differential equations. We validate our model against existing in vitro experimental data, and we use it to explore differences in system behavior when a single bolus of extracellular LDL is supplied to cells, compared to when a continuous supply of LDL particles is available. Whereas the former situation is common to in vitro experimental systems, the latter better reflects the in vivo situation. We use asymptotic analysis and numerical simulations to study the longtime behavior of model solutions. The implications of model-derived insights for experimental design are discussed.
Resumo:
Elevated levels of low-density-lipoprotein cholesterol (LDL-C) in the plasma are a well-established risk factor for the development of coronary heart disease. Plasma LDL-C levels are in part determined by the rate at which LDL particles are removed from the bloodstream by hepatic uptake. The uptake of LDL by mammalian liver cells occurs mainly via receptor-mediated endocytosis, a process which entails the binding of these particles to specific receptors in specialised areas of the cell surface, the subsequent internalization of the receptor-lipoprotein complex, and ultimately the degradation and release of the ingested lipoproteins' constituent parts. We formulate a mathematical model to study the binding and internalization (endocytosis) of LDL and VLDL particles by hepatocytes in culture. The system of ordinary differential equations, which includes a cholesterol-dependent pit production term representing feedback regulation of surface receptors in response to intracellular cholesterol levels, is analysed using numerical simulations and steady-state analysis. Our numerical results show good agreement with in vitro experimental data describing LDL uptake by cultured hepatocytes following delivery of a single bolus of lipoprotein. Our model is adapted in order to reflect the in vivo situation, in which lipoproteins are continuously delivered to the hepatocyte. In this case, our model suggests that the competition between the LDL and VLDL particles for binding to the pits on the cell surface affects the intracellular cholesterol concentration. In particular, we predict that when there is continuous delivery of low levels of lipoproteins to the cell surface, more VLDL than LDL occupies the pit, since VLDL are better competitors for receptor binding. VLDL have a cholesterol content comparable to LDL particles; however, due to the larger size of VLDL, one pit-bound VLDL particle blocks binding of several LDLs, and there is a resultant drop in the intracellular cholesterol level. When there is continuous delivery of lipoprotein at high levels to the hepatocytes, VLDL particles still out-compete LDL particles for receptor binding, and consequently more VLDL than LDL particles occupy the pit. Although the maximum intracellular cholesterol level is similar for high and low levels of lipoprotein delivery, the maximum is reached more rapidly when the lipoprotein delivery rates are high. The implications of these results for the design of in vitro experiments is discussed.
Resumo:
This paper presents a hybrid control strategy integrating dynamic neural networks and feedback linearization into a predictive control scheme. Feedback linearization is an important nonlinear control technique which transforms a nonlinear system into a linear system using nonlinear transformations and a model of the plant. In this work, empirical models based on dynamic neural networks have been employed. Dynamic neural networks are mathematical structures described by differential equations, which can be trained to approximate general nonlinear systems. A case study based on a mixing process is presented.
Resumo:
This paper tackles the problem of computing smooth, optimal trajectories on the Euclidean group of motions SE(3). The problem is formulated as an optimal control problem where the cost function to be minimized is equal to the integral of the classical curvature squared. This problem is analogous to the elastic problem from differential geometry and thus the resulting rigid body motions will trace elastic curves. An application of the Maximum Principle to this optimal control problem shifts the emphasis to the language of symplectic geometry and to the associated Hamiltonian formalism. This results in a system of first order differential equations that yield coordinate free necessary conditions for optimality for these curves. From these necessary conditions we identify an integrable case and these particular set of curves are solved analytically. These analytic solutions provide interpolating curves between an initial given position and orientation and a desired position and orientation that would be useful in motion planning for systems such as robotic manipulators and autonomous-oriented vehicles.
Resumo:
A one-dimensional shock-reflection test problem in the case of slab, cylindrical, or spherical symmetry is discussed. The differential equations for a similarity solution are derived and solved numerically in conjunction with the Rankie-Hugoniot shock relations.
Resumo:
A one-dimensional shock-reflection test problem in the case of slab, cylindrical or spherical symmetry is discussed for multi-component flows. The differential equations for a similarity solution are derived and then solved numerically in conjunction with the Rankine-Hugoniot shock relations.
Resumo:
We prove that all the eigenvalues of a certain highly non-self-adjoint Sturm–Liouville differential operator are real. The results presented are motivated by and extend those recently found by various authors (Benilov et al. (2003) [3], Davies (2007) [7] and Weir (2008) [18]) on the stability of a model describing small oscillations of a thin layer of fluid inside a rotating cylinder.
Resumo:
In a previous paper (J. of Differential Equations, Vol. 249 (2010), 3081-3098) we examined a family of periodic Sturm-Liouville problems with boundary and interior singularities which are highly non-self-adjoint but have only real eigenvalues. We now establish Schatten class properties of the associated resolvent operator.
Resumo:
This paper introduces PSOPT, an open source optimal control solver written in C++. PSOPT uses pseudospectral and local discretizations, sparse nonlinear programming, automatic differentiation, and it incorporates automatic scaling and mesh refinement facilities. The software is able to solve complex optimal control problems including multiple phases, delayed differential equations, nonlinear path constraints, interior point constraints, integral constraints, and free initial and/or final times. The software does not require any non-free platform to run, not even the operating system, as it is able to run under Linux. Additionally, the software generates plots as well as LATEX code so that its results can easily be included in publications. An illustrative example is provided.