932 resultados para Ferromagnetic Metals


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The threshold behavior of the transport properties of a random metal in the critical region near a metal–insulator transition is strongly affected by the measuring electromagnetic fields. In spite of the randomness, the electrical conductivity exhibits striking phase-coherent effects due to broken symmetry, which greatly sharpen the transition compared with the predictions of effective medium theories, as previously explained for electrical conductivities. Here broken symmetry explains the sign reversal of the T → 0 magnetoconductance of the metal–insulator transition in Si(B,P), also previously not understood by effective medium theories. Finally, the symmetry-breaking features of quantum percolation theory explain the unexpectedly very small electrical conductivity temperature exponent α = 0.22(2) recently observed in Ni(S,Se)2 alloys at the antiferromagnetic metal–insulator transition below T = 0.8 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metallothioneins (MT) are involved in the scavenging of the toxic heavy metals and protection of cells from reactive oxygen intermediates. To investigate the potential role of the protein Ku in the expression of MT, we measured the level of MT-I mRNA in the parental rat fibroblast cell line (Rat 1) and the cell lines that stably and constitutively overexpress the small subunit, the large subunit, and the heterodimer of Ku. Treatment with CdS04 or ZnS04 elevated the MT-I mRNA level 20- to 30-fold in the parental cells and the cells (Ku-70) that overproduce the small subunit or those (Ku-7080) overexpressing the heterodimer. By contrast, the cells (Ku-80) overexpressing the large subunit of Ku failed to induce MT-I. In vitro transcription assay showed that the MT-I promoter activity was suppressed selectively in the nuclear extracts from Ku-80 cells. The specificity of the repressor function was shown by the induction of hsp 70, another Cd-inducible gene, in Ku-80 cells. Addition of the nuclear extract from Ku-80 cells at the start of the transcription reaction abolished the MT-l promoter activity in the Rat 1 cell extract. The transcript once formed in Rat 1 nuclear extract was not degraded by further incubation with the extract from Ku-80 cells. The repressor was sensitive to heat. The DNA-binding activities of at least four transcription factors that control the MT-I promoter activity were not affected in Ku-80 cells. These observations have set the stage for further exploration of the mechanisms by which the Ku subunit mediates suppression of MT induction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a continual influx of heavy metal contaminants and pollutants into the biosphere from both natural and anthropogenic sources. A complex variety of abiotic and biotic processes affects their speciation and distribution, including adsorption onto and desorption from mineral surfaces, incorporation in precipitates or coprecipitates, release through the dissolution of minerals, and interactions with plants and microbes. Some of these processes can effectively isolate heavy metals from the biosphere, whereas others cause their release or transformation to different species that may be more (or less) bioavailable and/or toxic to organisms. Here we focus on abiotic adsorption and precipitation or coprecipitation processes involving the common heavy metal contaminant lead and the metalloids arsenic and selenium in mine tailings and contaminated soils. We have used extremely intense x-rays from synchrotron sources and a structure-sensitive method known as x-ray absorption fine structure (XAFS) spectroscopy to determine the molecular-level speciation of these elements at concentrations of 50 to several thousand ppm in the contaminated environmental samples as well as in synthetic sorption samples. Our XAFS studies of As and Pb in the mine tailings show that up to 50% of these contaminants in the samples studied may be present as adsorbed species on mineral surfaces, which makes them potentially more bioavailable than when present in sparingly soluble solid phases. Our XAFS studies of Se(VI) sorption on Fe2+-containing sulfates show that this element undergoes redox reactions that transform it into less bioavailable and less toxic species. This type of information on molecular-level speciation of heavy metal and metalloid contaminants in various environmental settings is needed to prioritize remediation efforts and to assess their potential hazard to humans and other organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I relate the historic successes, and present difficulties, of the renormalized quasiparticle theory of metals ("AGD" or Fermi liquid theory). I then describe the best-understood example of a non-Fermi liquid, the normal metallic state of the cuprate superconductors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With x-ray absorption spectroscopy and polarized neutron reflectometry we studied how the magnetic proximity effect at the interface between the cuprate high-TC superconductor YBa_(2)Cu_(3)O_(7) (YBCO) and the ferromagnet La_(2/3)Ca_(1/3)MnO_(3) (LCMO) is related to the electronic and magnetic properties of the LCMO layers. In particular, we explored how the magnitude of the ferromagnetic Cu moment on the YBCO side depends on the strength of the antiferromagnetic (AF) exchange coupling with the Mn moment on the LCMO side. We found that the Cu moment remains sizable if the AF coupling with the Mn moments is strongly reduced or even entirely suppressed. The ferromagnetic order of the Cu moments thus seems to be intrinsic to the interfacial CuO_(2) planes and related to a weakly ferromagnetic intraplanar exchange interaction. The latter is discussed in terms of the partial occupation of the Cu 3d_(3z^(2)−r^(2)) orbitals, which occurs in the context of the so-called orbital reconstruction of the interfacial Cu ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetization reversal of two-dimensional arrays of parallel ferromagnetic Fe nanowires embedded in nanoporous alumina templates has been studied. By combining bulk magnetization measurements (superconducting quantum interference device magnetometry) with field-dependent magnetic force microscopy (MFM), we have been able to decompose the macroscopic hysteresis loop in terms of the irreversible magnetic responses of individual nanowires. The latter are found to behave as monodomain ferromagnetic needles, with hysteresis loops displaced (asymmetric) as a consequence of the strong dipolar interactions between them. The application of field-dependent MFM provides a microscopic method to obtain the hysteresis curve of the array, by simply registering the fraction of up and down magnetized wires as a function of applied field. The observed deviations from the rectangular shape of the macroscopic hysteresis loop of the array can be ascribed to the spatial variation of the dipolar field through the inhomogeneously filled membrane. The system studied proves to be an excellent example of the two-dimensional classical Preisach model, well known from the field of hysteresis modeling and micromagnetism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a study of the ferromagnetic phase of a multilayer digital ferromagnetic semiconductor in the mean-field and effective-mass approximations, we find the exchange interaction to have the dominant energy scale of the problem, effectively controlling the spatial distribution of the carrier spins in the digital ferromagnetic heterostructures. In the ferromagnetic phase, the majority-spin and minority-spin carriers tend to be in different regions of the space (spin separation). Hence, the charge distribution of carriers also changes noticeably from the ferromagnetic to the paramagnetic phase. An example of a design to exploit these phenomena is given here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the influence of a uniform current j⃗ on the magnetization dynamics of a ferromagnetic metal. We find that the magnon energy ε(q⃗) has a current-induced contribution proportional to q⃗⋅J→, where J→ is the spin current, and predict that collective dynamics will be more strongly damped at finite j⃗. We obtain similar results for models with and without local moment participation in the magnetic order. For transition metal ferromagnets, we estimate that the uniform magnetic state will be destabilized for j≳109A cm-2. We discuss the relationship of this effect to the spin-torque effects that alter magnetization dynamics in inhomogeneous magnetic systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Circularly polarized laser pulses that excite electron-hole pairs across the band gap of (III,Mn)V ferromagnetic semiconductors can be used to manipulate and to study collective magnetization dynamics. The initial spin orientation of a photocarrier in a (III,V) semiconductors is determined by the polarization state of the laser. We show that the photocarrier spin can be irreversibly transferred to the collective magnetization, whose dynamics can consequently be flexibly controlled by suitably chosen laser pulses. As illustrations we demonstrate the feasibility of all optical ferromagnetic resonance and optical magnetization reorientation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poster presented in the International Conference of Magnetism, Rome, July 2003.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paper submitted to the 7th International Symposium on Feedstock Recycling of Polymeric Materials (7th ISFR 2013), New Delhi, India, 23-26 October 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The permanent expansion of the market of electrical and electronic equipment (EEE) and the shorter innovation cycles, lead to a faster replacement of these appliances, making EEE a fast-growing source of waste (WEEE). As stated in Directive 2012/19/EU1 on waste electrical and electronic equipment, the content of hazardous components in EEE is a major concern during the waste management phase, and recycling of WEEE is not currently undertaken to a sufficient extent, resulting in a loss of valuable resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The edges of graphene and graphene like systems can host localized states with evanescent wave function with properties radically different from those of the Dirac electrons in bulk. This happens in a variety of situations, that are reviewed here. First, zigzag edges host a set of localized non-dispersive state at the Dirac energy. At half filling, it is expected that these states are prone to ferromagnetic instability, causing a very interesting type of edge ferromagnetism. Second, graphene under the influence of external perturbations can host a variety of topological insulating phases, including the conventional quantum Hall effect, the quantum anomalous Hall (QAH) and the quantum spin Hall phase, in all of which phases conduction can only take place through topologically protected edge states. Here we provide an unified vision of the properties of all these edge states, examined under the light of the same one orbital tight-binding model. We consider the combined action of interactions, spin–orbit coupling and magnetic field, which produces a wealth of different physical phenomena. We briefly address what has been actually observed experimentally.