908 resultados para Feature detector


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper shows that countries characterized by a financial accelerator mechanism may reverse the usual finding of the literature -- flexible exchange rate regimes do a worse job of insulating open economies from external shocks. I obtain this result with a calibrated small open economy model that endogenizes foreign interest rates by linking them to the banking sector's foreign currency leverage. This relationship renders exchange rate policy more important compared to the usual exogeneity assumption. I find empirical support for this prediction using the Local Projections method. Finally, 2nd order approximation to the model finds larger welfare losses under flexible regimes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution, small-bore PET systems suffer from a tradeoff between system sensitivity, and image quality degradation. In these systems long crystals allow mispositioning of the line of response due to parallax error and this mispositioning causes resolution blurring, but long crystals are necessary for high system sensitivity. One means to allow long crystals without introducing parallax errors is to determine the depth of interaction (DOI) of the gamma ray interaction within the detector module. While DOI has been investigated previously, newly available solid state photomultipliers (SSPMs) well-suited to PET applications and allow new modules for investigation. Depth of interaction in full modules is a relatively new field, and so even if high performance DOI capable modules were available, the appropriate means to characterize and calibrate the modules are not. This work presents an investigation of DOI capable arrays and techniques for characterizing and calibrating those modules. The methods introduced here accurately and reliably characterize and calibrate energy, timing, and event interaction positioning. Additionally presented is a characterization of the spatial resolution of DOI capable modules and a measurement of DOI effects for different angles between detector modules. These arrays have been built into a prototype PET system that delivers better than 2.0 mm resolution with a single-sided-stopping-power in excess of 95% for 511 keV g's. The noise properties of SSPMs scale with the active area of the detector face, and so the best signal-to-noise ratio is possible with parallel readout of each SSPM photodetector pixel rather than multiplexing signals together. This work additionally investigates several algorithms for improving timing performance using timing information from multiple SSPM pixels when light is distributed among several photodetectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiomics is the high-throughput extraction and analysis of quantitative image features. For non-small cell lung cancer (NSCLC) patients, radiomics can be applied to standard of care computed tomography (CT) images to improve tumor diagnosis, staging, and response assessment. The first objective of this work was to show that CT image features extracted from pre-treatment NSCLC tumors could be used to predict tumor shrinkage in response to therapy. This is important since tumor shrinkage is an important cancer treatment endpoint that is correlated with probability of disease progression and overall survival. Accurate prediction of tumor shrinkage could also lead to individually customized treatment plans. To accomplish this objective, 64 stage NSCLC patients with similar treatments were all imaged using the same CT scanner and protocol. Quantitative image features were extracted and principal component regression with simulated annealing subset selection was used to predict shrinkage. Cross validation and permutation tests were used to validate the results. The optimal model gave a strong correlation between the observed and predicted shrinkages with . The second objective of this work was to identify sets of NSCLC CT image features that are reproducible, non-redundant, and informative across multiple machines. Feature sets with these qualities are needed for NSCLC radiomics models to be robust to machine variation and spurious correlation. To accomplish this objective, test-retest CT image pairs were obtained from 56 NSCLC patients imaged on three CT machines from two institutions. For each machine, quantitative image features with concordance correlation coefficient values greater than 0.90 were considered reproducible. Multi-machine reproducible feature sets were created by taking the intersection of individual machine reproducible feature sets. Redundant features were removed through hierarchical clustering. The findings showed that image feature reproducibility and redundancy depended on both the CT machine and the CT image type (average cine 4D-CT imaging vs. end-exhale cine 4D-CT imaging vs. helical inspiratory breath-hold 3D CT). For each image type, a set of cross-machine reproducible, non-redundant, and informative image features was identified. Compared to end-exhale 4D-CT and breath-hold 3D-CT, average 4D-CT derived image features showed superior multi-machine reproducibility and are the best candidates for clinical correlation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a measurement of the charged current interaction rate of the electron neutrino beam component of the beam above 1.5 GeV using the large fiducial mass of the T2K π0 detector. The predominant portion of the νe flux (∼85%) at these energies comes from kaon decays. The measured ratio of the observed beam interaction rate to the predicted rate in the detector with water targets filled is 0.89 ± 0.08 (stat.) ± 0.11 (sys.), and with the water targets emptied is 0.90 ± 0.09 (stat.) ± 0.13 (sys.). The ratio obtained for the interactions on water only from an event subtraction method is 0.87 ± 0.33 (stat.) ± 0.21 (sys.). This is the first measurement of the interaction rate of electron neutrinos on water, which is particularly of interest to experiments with water Cherenkov detectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The AEgIS experiment is an interdisciplinary collaboration between atomic, plasma and particle physicists, with the scientific goal of performing the first precision measurement of the Earth's gravitational acceleration on antimatter. The principle of the experiment is as follows: cold antihydrogen atoms are synthesized in a Penning-Malmberg trap and are Stark accelerated towards a moiré deflectometer, the classical counterpart of an atom interferometer, and annihilate on a position sensitive detector. Crucial to the success of the experiment is an antihydrogen detector that will be used to demonstrate the production of antihydrogen and also to measure the temperature of the anti-atoms and the creation of a beam. The operating requirements for the detector are very challenging: it must operate at close to 4 K inside a 1 T solenoid magnetic field and identify the annihilation of the antihydrogen atoms that are produced during the 1 μs period of antihydrogen production. Our solution—called the FACT detector—is based on a novel multi-layer scintillating fiber tracker with SiPM readout and off the shelf FPGA based readout system. This talk will present the design of the FACT detector and detail the operation of the detector in the context of the AEgIS experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objetivo de esta tesis es el desarrollo de un sistema completo de navegación, aprendizaje y planificación para un robot móvil. Dentro de los innumerables problemas que este gran objetivo plantea, hemos dedicado especial atención al problema del conocimiento autónomo del mundo. Nuestra mayor preocupación ha sido la de establecer mecanismos que permitan, a partir de información sensorial cruda, el desarrollo incremental de un modelo topológico del entorno en el que se mueve el robot. Estos mecanismos se apoyan invariablemente en un nuevo concepto propuesto en esta tesis: el gradiente sensorial. El gradiente sensorial es un dispositivo matemático que funciona como un detector de sucesos interesantes para el sistema. Una vez detectado uno de estos sucesos, el robot puede identificar su situación en un mapa topológico y actuar en consecuencia. Hemos denominado a estas situaciones especiales lugares sensorialmente relevantes, ya que (a) captan la atención del sistema y (b) pueden ser identificadas utilizando la información sensorial. Para explotar convenientemente los modelos construidos, hemos desarrollado un algoritmo capaz de elaborar planes internalizados, estableciendo una red de sugerencias en los lugares sensorialmente relevantes, de modo que el robot encuentra en estos puntos una dirección recomendada de navegación. Finalmente, hemos implementado un sistema de navegación robusto con habilidades para interpretar y adecuar los planes internalizados a las circunstancias concretas del momento. Nuestro sistema de navegación está basado en la teoría de campos de potencial artificial, a la que hemos incorporado la posibilidad de añadir cargas ficticias como ayuda a la evitación de mínimos locales. Como aportación adicional de esta tesis al campo genérico de la ciencia cognitiva, todos estos elementos se integran en una arquitectura centrada en la memoria, lo que pretende resaltar la importancia de ésta en los procesos cognitivos de los seres vivos y aporta un giro conceptual al punto de vista tradicional, centrado en los procesos. The general objective of this thesis is the development of a global navigation system endowed with planning and learning features for a mobile robot. Within this general objective we have devoted a special effort to the autonomous learning problem. Our main concern has been to establish the necessary mechanisms for the incremental development of a topological model of the robot’s environment using the sensory information. These mechanisms are based on a new concept proposed in the thesis: the sensory gradient. The sensory gradient is a mathematical device which works like a detector of “interesting” environment’s events. Once a particular event has been detected the robot can identify its situation in the topological map and to react accordingly. We have called these special situations relevant sensory places because (a) they capture the system’s attention and (b) they can be identified using the sensory information. To conveniently exploit the built-in models we have developed an algorithm able to make internalized plans, establishing a suggestion network in the sensory relevant places in such way that the robot can find at those places a recommended navigation direction. It has been also developed a robust navigation system able to navigate by means of interpreting and adapting the internalized plans to the concrete circumstances at each instant, i.e. a reactive navigation system. This reactive system is based on the artificial potential field approach with the additional feature introduced in the thesis of what we call fictitious charges as an aid to avoid local minima. As a general contribution of the thesis to the cognitive science field all the above described elements are integrated in a memory-based architecture, emphasizing the important role played by the memory in the cognitive processes of living beings and giving a conceptual turn in the usual process-based approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a novel and approach for obtaining 3D models from video sequences captured with hand-held cameras is addressed. We define a pipeline that robustly deals with different types of sequences and acquiring devices. Our system follows a divide and conquer approach: after a frame decimation that pre-conditions the input sequence, the video is split into short-length clips. This allows to parallelize the reconstruction step which translates into a reduction in the amount of computational resources required. The short length of the clips allows an intensive search for the best solution at each step of reconstruction which robustifies the system. The process of feature tracking is embedded within the reconstruction loop for each clip as opposed to other approaches. A final registration step, merges all the processed clips to the same coordinate frame

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabajo de Tesis ha abordado el objetivo de dar robustez y mejorar la Detección de Actividad de Voz en entornos acústicos adversos con el fin de favorecer el comportamiento de muchas aplicaciones vocales, por ejemplo aplicaciones de telefonía basadas en reconocimiento automático de voz, aplicaciones en sistemas de transcripción automática, aplicaciones en sistemas multicanal, etc. En especial, aunque se han tenido en cuenta todos los tipos de ruido, se muestra especial interés en el estudio de las voces de fondo, principal fuente de error de la mayoría de los Detectores de Actividad en la actualidad. Las tareas llevadas a cabo poseen como punto de partida un Detector de Actividad basado en Modelos Ocultos de Markov, cuyo vector de características contiene dos componentes: la energía normalizada y la variación de la energía. Las aportaciones fundamentales de esta Tesis son las siguientes: 1) ampliación del vector de características de partida dotándole así de información espectral, 2) ajuste de los Modelos Ocultos de Markov al entorno y estudio de diferentes topologías y, finalmente, 3) estudio e inclusión de nuevas características, distintas de las del punto 1, para filtrar los pulsos de pronunciaciones que proceden de las voces de fondo. Los resultados de detección, teniendo en cuenta los tres puntos anteriores, muestran con creces los avances realizados y son significativamente mejores que los resultados obtenidos, bajo las mismas condiciones, con otros detectores de actividad de referencia. This work has been focused on improving the robustness at Voice Activity Detection in adverse acoustic environments in order to enhance the behavior of many vocal applications, for example telephony applications based on automatic speech recognition, automatic transcription applications, multichannel systems applications, and so on. In particular, though all types of noise have taken into account, this research has special interest in the study of pronunciations coming from far-field speakers, the main error source of most activity detectors today. The tasks carried out have, as starting point, a Hidden Markov Models Voice Activity Detector which a feature vector containing two components: normalized energy and delta energy. The key points of this Thesis are the following: 1) feature vector extension providing spectral information, 2) Hidden Markov Models adjustment to environment and study of different Hidden Markov Model topologies and, finally, 3) study and inclusion of new features, different from point 1, to reject the pronunciations coming from far-field speakers. Detection results, taking into account the above three points, show the advantages of using this method and are significantly better than the results obtained under the same conditions by other well-known voice activity detectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electroencephalograph (EEG) signal is one of the most widely used signals in the biomedicine field due to its rich information about human tasks. This research study describes a new approach based on i) build reference models from a set of time series, based on the analysis of the events that they contain, is suitable for domains where the relevant information is concentrated in specific regions of the time series, known as events. In order to deal with events, each event is characterized by a set of attributes. ii) Discrete wavelet transform to the EEG data in order to extract temporal information in the form of changes in the frequency domain over time- that is they are able to extract non-stationary signals embedded in the noisy background of the human brain. The performance of the model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed scheme has potential in classifying the EEG signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The focus of this chapter is to study feature extraction and pattern classification methods from two medical areas, Stabilometry and Electroencephalography (EEG). Stabilometry is the branch of medicine responsible for examining balance in human beings. Balance and dizziness disorders are probably two of the most common illnesses that physicians have to deal with. In Stabilometry, the key nuggets of information in a time series signal are concentrated within definite time periods are known as events. In this chapter, two feature extraction schemes have been developed to identify and characterise the events in Stabilometry and EEG signals. Based on these extracted features, an Adaptive Fuzzy Inference Neural network has been applied for classification of Stabilometry and EEG signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gamma detectors based on monolithic scintillator blocks coupled to APDs matrices have proved to be a good alternative to pixelated ones for PET scanners. They provide comparable spatial resolution, improve the sensitivity and make easier the mechanical design of the system. In this study we evaluate by means of Geant4-based simulations the possibility of replacing the APDs by SiPMs. Several commercial matrices of light sensors coupled to LYSO:Ce monolithic blocks have been simulated and compared. Regarding the spatial resolution and linearity of the detector, SiPMs with high photo detection efficiency could become an advantageous replacement for the APDs

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have analyzed the performance of a PET demonstrator formed by two sectors of four monolithic detector blocks placed face-to-face. Both front-end and read-out electronics have been evaluated by means of coincidence measurements using a rotating 22Na source placed at the center of the sectors in order to emulate the behavior of a complete full ring. A continuous training method based on neural network (NN) algorithms has been carried out to determine the entrance points over the surface of the detectors. Reconstructed images from 1 MBq 22Na point source and 22Na Derenzo phantom have been obtained using both filtered back projection (FBP) analytic methods and the OSEM 3D iterative algorithm available in the STIR software package [1]. Preliminary data on image reconstruction from a 22Na point source with Ø = 0.25 mm show spatial resolutions from 1.7 to 2.1 mm FWHM in the transverse plane. The results confirm the viability of this design for the development of a full-ring brain PET scanner compatible with magnetic resonance imaging for human studies.