976 resultados para Family Transcription Factors


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phosphorylation of transcription factors is a rapid and reversible process linking cell signaling and control of gene expression, therefore understanding how it controls the transcription factor functions is one of the challenges of functional genomics. We performed such analysis for the forkhead transcription factor FOXC2 mutated in human hereditary disease lymphedemadistichiasis and important for the development of venous and lymphatic valves and lymphatic collecting vessels. We found that FOXC2 is phosphorylated in a cell-cycle dependent manner on eight evolutionary conserved serine/threonine residues, seven of which are clustered within a 70 amino acid domain. Surprisingly, the mutation of phosphorylation sites or a complete deletion of the domain did not affect the transcriptional activity of FOXC2 in a synthetic reporter assay. However, overexpression of the wild type or phosphorylation-deficient mutant resulted in overlapping but distinct gene expression profiles suggesting that binding of FOXC2 to individual sites under physiological conditions is affected by phosphorylation. To gain a direct insight into the role of FOXC2 phosphorylation, we performed comparative genome-wide location analysis (ChIP-chip) of wild type and phosphorylation-deficient FOXC2 in primary lymphatic endothelial cells. The effect of loss of phosphorylation on FOXC2 binding to genomic sites ranged from no effect to nearly complete inhibition of binding, suggesting a mechanism for how FOXC2 transcriptional program can be differentially regulated depending on FOXC2 phosphorylation status. Based on these results, we propose an extension to the enhanceosome model, where a network of genomic context-dependent DNA-protein and protein-protein interactions not only distinguishes a functional site from a nonphysiological site, but also determines whether binding to the functional site can be regulated by phosphorylation. Moreover, our results indicate that FOXC2 may have different roles in quiescent versus proliferating lymphatic endothelial cells in vivo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor (PPAR) dysfunction has been implicated in the manifestation of many diseases and illnesses, ranging from obesity to cancer. Herein, we discuss the role of PPARbeta, one of the three PPAR isotypes, during wound healing. While PPARbeta expression is undetectable in unchallenged and healthy adult interfollicular mouse skin, it is robustly re-activated in stress situations, such as upon phorbol ester treatment, hair plucking and cutaneous wounding. The inflammatory reaction associated with a skin injury activates the keratinocytes at the edges of the wound. This activation involves PPARbeta, whose expression and activity as transcription factor are up-regulated by pro-inflammatory signals. The re-activation of PPARbeta influences three important properties of the activated keratinocytes that are vital for rapid wound closure, namely, survival, migration and differentiation. The anti-apoptotic and, thus, survival role of PPARbeta is mediated by the up-regulation of expression of integrin-linked kinase and 3-phosphoinositide-dependent kinase-1. Both kinases are required for the full activation of the Akt1 survival cascade. Therefore, the up-regulation of PPARbeta, early after injury, appears to be important to maintain a sufficient number of viable keratinocytes at the wound edge. At a later stage of wound repair, the stimulation of keratinocyte migration and differentiation by PPARbeta is also likely to be important for the formation of a new epidermis at the wounded area. Consistent with these observations, the entire wound healing process is delayed in PPARbeta +/- mice and wound closure is retarded by 2-3 days. The multiple roles of PPARbeta in the complex keratinocyte response after injury and during skin repair certainly justify a further exploration of its potential as a target for wound healing drugs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fully differentiated pancreatic β cells are essential for normal glucose homeostasis in mammals. Dedifferentiation of these cells has been suggested to occur in type 2 diabetes, impairing insulin production. Since chronic fuel excess ("glucotoxicity") is implicated in this process, we sought here to identify the potential roles in β-cell identity of the tumor suppressor liver kinase B1 (LKB1/STK11) and the downstream fuel-sensitive kinase, AMP-activated protein kinase (AMPK). Highly β-cell-restricted deletion of each kinase in mice, using an Ins1-controlled Cre, was therefore followed by physiological, morphometric, and massive parallel sequencing analysis. Loss of LKB1 strikingly (2.0-12-fold, E<0.01) increased the expression of subsets of hepatic (Alb, Iyd, Elovl2) and neuronal (Nptx2, Dlgap2, Cartpt, Pdyn) genes, enhancing glutamate signaling. These changes were partially recapitulated by the loss of AMPK, which also up-regulated β-cell "disallowed" genes (Slc16a1, Ldha, Mgst1, Pdgfra) 1.8- to 3.4-fold (E<0.01). Correspondingly, targeted promoters were enriched for neuronal (Zfp206; P=1.3×10(-33)) and hypoxia-regulated (HIF1; P=2.5×10(-16)) transcription factors. In summary, LKB1 and AMPK, through only partly overlapping mechanisms, maintain β-cell identity by suppressing alternate pathways leading to neuronal, hepatic, and other characteristics. Selective targeting of these enzymes may provide a new approach to maintaining β-cell function in some forms of diabetes.-Kone, M., Pullen, T. J., Sun, G., Ibberson, M., Martinez-Sanchez, A., Sayers, S., Nguyen-Tu, M.-S., Kantor, C., Swisa, A., Dor, Y., Gorman, T., Ferrer, J., Thorens, B., Reimann, F., Gribble, F., McGinty, J. A., Chen, L., French, P. M., Birzele, F., Hildebrandt, T., Uphues, I., Rutter, G. A. LKB1 and AMPK differentially regulate pancreatic β-cell identity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Humans spend one third of their life sleeping, then we could raise the basic question: Why do we sleep? Despite the fact that we still don't fully understand its function, we made much progress in understanding at different levels how sleep is regulated. One model suggests that sleep is regulated by two processes: a homeostatic process that tracks the need for sleep and by a circadian rhythm that determines the preferred time-of-day sleep occurs. At the molecular level circadian rhythms are a property of interlocking transcriptional regula-tors referred to as clock genes. The heterodimeric transcription factors BMAL1::CLOCK/NPAS2 drive the transcription of many target genes including the clock genes Cryptochome1 (Cry1), Cry2, Period1 (Per1), and Per2. The encoded CRY/PER proteins are transcriptional inhibitors of BMAL1::CLOCK/NPAS2 thereby providing negative feedback to their own transcription. These genes seem, however, also involved in sleep homeostasis because the brain expression of clock genes, es-pecially that of Per2, increase as a function of time-spent-awake and because mice lacking clock genes display altered sleep homeostasis. The aim of first part of my doctoral work has been to advance our understanding the link that exists between sleep homeostasis and circadian rhythms investigating a possible mechanism by which sleep deprivation could alter clock gene expression by quantifying DNA-binding of the core-clock genes BMAL1, CLOCK and NPAS2 to their target chromatin loci including the E-box enhancers of the Per2 promoter. We made use of chromatin immunoprecipitation (ChIP) and quantitative poly-merase chain reaction (qPCR) to show that DNA-binding of CLOCK and BMAL1 to their target genes changes as a function of time-of-day in both liver and cerebral cortex. We then performed a 6h sleep deprivation (SD) and observed a significant decrease in DNA-binding of CLOCK and BMAL1 to Dbp. This is consistent with a decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was similarly decreased following SD. However, SD has been previously shown to in-crease Per2 expression in the cortex which seems paradoxical. Our results demonstrate that sleep-wake history can affect the molecular clock machinery directly at the level of the chromatin thereby altering the cortical expression of Dbp and Per2, and likely other targets. However, the precise dy-namic relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive. The second aim of my doctoral work has been to perform an in depth characterization of cir-cadian rhythmicity, sleep architecture, analyze the response to SD in full null-Per2 knock-out (Per2-/-) mice, and Per1-/- mice, as well as their double knock-out offspring (Per1,2-/-) and littermate wildtype (Wt) mice. The techniques used include locomotor activity recording by passive infrared (PIR) sen-sors, EEG/EMG surgery, recording, and analysis, and cerebral cortex extraction and quantification of mRNA levels by qPCR. Under standard LD12:12 conditions, we found that wakefulness onset, as well as the time courses of clock gene expression in the brain and corticosterone plasma levels were ad-vanced by about 2h in Per2-/- mice compared to Wt mice. When released under constant dark condi-tions almost all Per2-/- mice (97%) became arrhythmic immediately. From these observations, we conclude that while Per2-/- mice seem to be able to anticipate dark onset, this does not result from a self-sustained circadian clock. Our results suggest instead that the earlier onset of activity results from a labile, not-self sustained 22h rhythm linked to light onset suggesting the existence of a light-driven rhythm. Analyses of sleep under LD12:12 conditions revealed that in both Per2-/- and Per1,2-/- mice the same sleep phenotypes are observed compared to Wt mice: increased NREM sleep frag-mentation and inability to adequately compensate the loss of NREM sleep. That suggests a possible role of PER2 in sleep consolidation and recovery.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: One of the seven key scientific priorities identified in the road map on HIV cure research is to 'determine the host mechanisms that control HIV replication in the absence of therapy'. This review summarizes the recent work in genomics and in epigenetic control of viral replication that is relevant for this mission. RECENT FINDINGS: New technologies allow the joint analysis of host and viral transcripts. They identify the patterns of antisense transcription of the viral genome and its role in gene regulation. High-throughput studies facilitate the assessment of integration at the genome scale. Integration site, orientation and host genomic context modulate the transcription and should also be assessed at the level of single cells. The various models of latency in primary cells can be followed using dynamic study designs to acquire transcriptome and proteome data of the process of entry, maintenance and reactivation of latency. Dynamic studies can be applied to the study of transcription factors and chromatin modifications in latency and upon reactivation. SUMMARY: The convergence of primary cell models of latency, new high-throughput quantitative technologies applied to the study of time series and the identification of compounds that reactivate viral transcription bring unprecedented precision to the study of viral latency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ability to regulate specific genes of energy metabolism in response to fasting and feeding is an important adaptation allowing survival of intermittent food supplies. However, little is known about transcription factors involved in such responses in higher organisms. We show here that gene expression in adipose tissue for adipocyte determination differentiation dependent factor (ADD) 1/sterol regulatory element binding protein (SREBP) 1, a basic-helix-loop-helix protein that has a dual DNA-binding specificity, is reduced dramatically upon fasting and elevated upon refeeding; this parallels closely the regulation of two adipose cell genes that are crucial in energy homeostasis, fatty acid synthetase (FAS) and leptin. This elevation of ADD1/SREBP1, leptin, and FAS that is induced by feeding in vivo is mimicked by exposure of cultured adipocytes to insulin, the classic hormone of the fed state. We also show that the promoters for both leptin and FAS are transactivated by ADD1/SREBP1. A mutation in the basic domain of ADD1/SREBP1 that allows E-box binding but destroys sterol regulatory element-1 binding prevents leptin gene transactivation but has no effect on the increase in FAS promoter function. Molecular dissection of the FAS promoter shows that most if not all of this action of ADD1/SREBP1 is through an E-box motif at -64 to -59, contained with a sequence identified previously as the major insulin response element of this gene. These results indicate that ADD1/SREBP1 is a key transcription factor linking changes in nutritional status and insulin levels to the expression of certain genes that regulate systemic energy metabolism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptors have enjoyed the spotlight for many reasons. These transcription factors are ligand-inducible nuclear receptors that modulate gene expression in response to a broad spectrum of compounds. The recognition that PPARs are indeed nuclear receptors for polyunsaturated fatty acids, some eicosanoids and also lipid-lowering and antidiabetic drugs, has opened many exciting avenues of research and drug discovery. Recent studies on the PPAR function have extended the role of these transcription factors beyond energy homeostasis to master gene in adipogenesis and also determinants in inflammation control. While rapid advances have been made, it is clear that we are far from a global understanding of the mechanisms and functions of PPARs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An accurate assessment of the rising ambient temperature by plant cells is crucial for the timely activation of various molecular defences before the appearance of heat damage. Recent findings have allowed a better understanding of the early cellular events that take place at the beginning of mild temperature rise, to timely express heat-shock proteins (HSPs), which will, in turn, confer thermotolerance to the plant. Here, we discuss the key components of the heat signalling pathway and suggest a model in which a primary sensory role is carried out by the plasma membrane and various secondary messengers, such as Ca(2+) ions, nitric oxide (NO) and hydrogen peroxide (H(2) O(2) ). We also describe the role of downstream components, such as calmodulins, mitogen-activated protein kinases and Hsp90, in the activation of heat-shock transcription factors (HSFs). The data gathered for land plants suggest that, following temperature elevation, the heat signal is probably transduced by several pathways that will, however, coalesce into the final activation of HSFs, the expression of HSPs and the onset of cellular thermotolerance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Treg are the main mediators of dominant tolerance. Their mechanisms of action and applications are subjects of considerable debate currently. However, a human microRNA (miR) Treg signature has not been described yet. We investigated human natural Treg and identified a signature composed of five miR (21, 31, 125a, 181c and 374). Among those, two were considerably under-expressed (miR-31 and miR-125a). We identified a functional target sequence for miR-31 in the 3' untranslated region (3' UTR) of FOXP3 mRNA. Using lentiviral transduction of fresh cord blood T cells, we demonstrated that miR-31 and miR-21 had an effect on FOXP3 expression levels. We showed that miR-31 negatively regulates FOXP3 expression by binding directly to its potential target site in the 3' UTR of FOXP3 mRNA. We next demonstrated that miR-21 acted as a positive, though indirect, regulator of FOXP3 expression. Transduction of the remaining three miR had no direct effect on FOXP3 expression or on the phenotype and will remain the subject of future investigations. In conclusion, not only have we identified and validated a miR signature for human natural Treg, but also unveiled some of the mechanisms by which this signature was related to the control of FOXP3 expression in these cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The expression patterns of the three different peroxisome proliferator-activated receptor (PPAR) isotypes have been determined during rat embryonic development by in situ hybridization. The expression of PPARalpha starts late in development, with increasing levels in organs such as liver, kidney, intestine, and pancreas, in which it will also be present later in adulthood to regulate its specific target genes. PPARalpha is also transiently expressed in the embryonic epidermis and central nervous system. PPARgamma presents a very restricted pattern of expression, being strongly expressed in brown adipose tissue, in which differentiation it has been shown to participate. Like PPARalpha, it is also expressed transiently in the central nervous system. Interestingly, PPARalpha, -beta and -gamma are coexpressed at high levels in brown adipose tissue. Finally, the high and ubiquitous expression of PPARbeta suggests some fundamental role(s) that this receptor might play throughout development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The retinoid X receptor beta (RXR beta; H-2RIIBP) forms heterodimers with various nuclear hormone receptors and binds multiple hormone response elements, including the estrogen response element (ERE). In this report, we show that endogenous RXR beta contributes to ERE binding activity in nuclear extracts of the human breast cancer cell line MCF-7. To define a possible regulatory role of RXR beta regarding estrogen-responsive transcription in breast cancer cells, RXR beta and a reporter gene driven by the vitellogenin A2 ERE were transfected into estrogen-treated MCF-7 cells. RXR beta inhibited ERE-driven reporter activity in a dose-dependent and element-specific fashion. This inhibition occurred in the absence of the RXR ligand 9-cis retinoic acid. The RXR beta-induced inhibition was specific for estrogen receptor (ER)-mediated ERE activation because inhibition was observed in ER-negative MDA-MB-231 cells only following transfection of the estrogen-activated ER. No inhibition of the basal reporter activity was observed. The inhibition was not caused by simple competition of RXR beta with the ER for ERE binding, since deletion mutants retaining DNA binding activity but lacking the N-terminal or C-terminal domain failed to inhibit reporter activity. In addition, cross-linking studies indicated the presence of an auxiliary nuclear factor present in MCF-7 cells that contributed to RXR beta binding of the ERE. Studies using known heterodimerization partners of RXR beta confirmed that RXR beta/triiodothyronine receptor alpha heterodimers avidly bind the ERE but revealed the existence of another triiodothyronine-independent pathway of ERE inhibition. These results indicate that estrogen-responsive genes may be negatively regulated by RXR beta through two distinct pathways.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The levels of regulatory T cells (Treg cells), analyzed by Foxp3 mRNA expression, were determined in lesions from patients with acute cutaneous leishmaniasis (ACL) and chronic cutaneous leishmaniasis (CCL). We demonstrated that Treg cells preferentially accumulate in lesions from ACL patients during the early phase of infection (lesion duration of less than 1 month). In addition, levels of Foxp3 mRNA transcripts were significantly higher in specimens from patients with CCL than in those from patients with ACL, suggesting a critical role of intralesional Treg cells in CCL. Intralesional Treg cells from both ACL and CCL patients were shown to have suppressive functions in vitro, since they inhibited the gamma interferon (IFN-gamma) produced by CD4(+) CD25(-) T cells purified from peripheral blood mononuclear cells from the same patient in response to Leishmania guyanensis stimulation. Intralesional 2,3-indoleamine dioxygenase (IDO) mRNA expression was associated with that of Foxp3, suggesting a role for IDO in the suppressive activity of intralesional Treg cells. In addition, a role, albeit minor, of interleukin-10 (IL-10) was also demonstrated, since neutralization of IL-10 produced by intralesional T cells increased IFN-gamma production by effector cells in an in vitro suppressive assay. These results confirm the role of intralesional Treg cells in the immunopathogenesis of human Leishmania infection, particularly in CCL patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Considerable progress has been made in identifying the targets of plant microRNAs, many of which regulate the stability or translation of mRNAs that encode transcription factors involved in development. In most cases, it is unknown, however, which immediate transcriptional targets mediate downstream effects of the microRNA-regulated transcription factors. We identified a new process controlled by the miR319-regulated clade of TCP (TEOSINTE BRANCHED/CYCLOIDEA/PCF) transcription factor genes. In contrast to other miRNA targets, several of which modulate hormone responses, TCPs control biosynthesis of the hormone jasmonic acid. Furthermore, we demonstrate a previously unrecognized effect of TCPs on leaf senescence, a process in which jasmonic acid has been proposed to be a critical regulator. We propose that miR319-controlled TCP transcription factors coordinate two sequential processes in leaf development: leaf growth, which they negatively regulate, and leaf senescence, which they positively regulate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The wing of the fruit fly, Drosophila melanogaster, with its simple, two-dimensional structure, is a model organ well suited for a systems biology approach. The wing arises from an epithelial sac referred to as the wing imaginal disc, which undergoes a phase of massive growth and concomitant patterning during larval stages. The Decapentaplegic (Dpp) morphogen plays a central role in wing formation with its ability to co-coordinately regulate patterning and growth. Here, we asked whether the Dpp signaling activity scales, i.e. expands proportionally, with the growing wing imaginal disc. Using new methods for spatial and temporal quantification of Dpp activity and its scaling properties, we found that the Dpp response scales with the size of the growing tissue. Notably, scaling is not perfect at all positions in the field and the scaling of target gene domains is ensured specifically where they define vein positions. We also found that the target gene domains are not defined at constant concentration thresholds of the downstream Dpp activity gradients P-Mad and Brinker. Most interestingly, Pentagone, an important secreted feedback regulator of the pathway, plays a central role in scaling and acts as an expander of the Dpp gradient during disc growth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context: Sarcopenia is thought to be associated with mitochondrial (M) loss. It is unclear whether the decrease in M content is consequent to aging per se or to decreased physical activity. Objectives: To examine the influence of fitness on M content and function, and to assess whether exercise could improve M function in older adults. Design and subjects: Three distinct studies were conducted: 1) a cross-sectional observation comparing M content and fitness in a large heterogeneous cohort of older adults; 2) a case-control study comparing chronically endurance-trained older adults (A) and sedentary (S) subjects matched for age and gender; 3) a 4-month exercise intervention in S. Setting: University-based clinical research center Outcomes: M volume density (Mv) was assessed by electron microscopy from vastus lateralis biopsies, electron transport chain proteins (ETC) by western blotting, mRNAs for transcription factors involved in M biogenesis by qRT-PCR and in-vivo oxidative capacity (ATPmax) by (31)P-MR spectroscopy. Peak oxygen uptake (VO2peak) was measured by GXT. Results: VO2peak was strongly correlated with Mv in eighty 60-80 yo adults. Comparison of A vs. S revealed differences in Mv, ATPmax and some ETC complexes. Finally, exercise intervention confirmed that S are able to recover Mv, ATPmax and specific transcription factors. Conclusions: These data suggest that 1) aging per se is not the primary culprit leading to M dysfunction, 2) an aerobic exercise program, even at an older age, can ameliorate the loss in skeletal muscle M content and may prevent aging muscle comorbidities and 3) the improvement of M function is all about content.