931 resultados para FREQUENCY-MODULATED ATOMIC FORCE
Resumo:
Tese de doutoramento, Química (Química Física), Universidade de Lisboa, Faculdade de Ciências, 2016
Resumo:
We used a novel system of three continuous wave Doppler radars to successfully record the directivity of i) Strombolian explosions from the active lava lake of Erebus volcano, Antarctica, ii) eruptions at Stromboli volcano, Italy, and iii) a man-made explosion in a quarry. Erebus volcano contains a convecting phonolite lava lake, presumably connected to a magma chamber at depth. It is one of the few open vent volcanoes that allow a direct observation of source processes during explosions. Its lava lake is the source of frequent violent Strombolian explosions, caused by large gas bubbles bursting at the lake surface. The exact mechanism of these bubble bursts is unclear, as is the mechanism of the creation of the infrasound signal accompanying the explosions. We use the Doppler radar data to calculate the directivity of Strombolian eruptions at Erebus. This allows us to derive information about the expected type of infrasound source pattern (i.e. the role of a dipole in addition to the monopole signature) and the physical structure of the volcano. We recorded 10 large explosions simultaneously with three radars, enabling us to calculate time series of 3D directivity vectors (i.e. effectively 4D), which describe the direction of preferred expansion of the gas bubble during an explosion. Such directivity information allows a comparison to dipole infrasound radiation patterns recorded during similar explosions only a few weeks later. Video observations of explosions support our interpretation of the measurements. We conclude that at Erebus, the directivity of explosions is mainly controlled by random processes. Since the geometry of the uppermost conduit is assumed to have a large effect on the directivity of explosions, the results suggest a largely symmetrical uppermost conduit with a vertical axis of symmetry. For infrasound recordings, a significant dipole signature can be expected in addition to the predominant monopole signature.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
This work reports the first instance of self-organized thermoset blends containing diblock copolymers with a crystallizable thermoset-immiscible block. Nanostructured thermoset blends of bisphenol A-type epoxy resin (ER) and a low-molecular-weight (M-n = 1400) amphiphilic polyethylene-block-poly(ethylene oxide) (EEO) symmetric diblock copolymer were prepared using 4,4'-methylenedianiline (MDA) as curing agent and were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), small-angle X-ray scattering (SAXS), and differential scanning calorimetry (DSC). All the MDA-cured ER/EEO blends do not show macroscopic phase separation but exhibit microstructures. The ER selectively mixes with the epoxy-miscible PEO block in the EEO diblock copolymer whereas the crystallizable PE blocks that are immiscible with ER form separate microdomains at nanoscales in the blends. The PE crystals with size on nanoscales are formed and restricted within the individual spherical micelles in the nanostructured ER/EEO blends with EEO content up to 30 wt %. The spherical micelles are highly aggregated in the blends containing 40 and 50 wt % EEO. The PE dentritic crystallites exist in the blend containing 50 wt % EEO whereas the blends with even higher EEO content are completely volume-filled with PE spherulites. The semicrystalline microphase-separated lamellae in the symmetric EEO diblock copolymer are swollen in the blend with decreasing EEO content, followed by a structural transition to aggregated spherical micellar phase morphology and, eventually, spherical micellar phase morphology at the lowest EEO contents. Three morphological regimes are identified, corresponding precisely to the three regimes of crystallization kinetics of the PE blocks. The nanoscale confinement effect on the crystallization kinetics in nanostructured thermoset blends is revealed for the first time. This new phenomenon is explained on the basis of homogeneous nucleation controlled crystallization within nanoscale confined environments in the block copolymer/thermoset blends.
Resumo:
The anterior adhesive mechanism was studied for Merizocotyle icopae (Monogenea: Monocotylidae). Adult anterior apertures can open and close. In addition, duct endings terminating within the apertures are everted or retracted depending on the stage of attachment. Adhesive in adults is synthesized from all 3 secretory types (rod-shaped, small and large spheroidal bodies) found within anterior apertures. All exit together and undergo mixing to produce the adhesive matrix, a process that depletes duct contents. A greater number of ducts carrying rod-shaped bodies is depleted than ducts containing spheroidal bodies which changes the ratio of secretory types present on detachment. Detachment involves elongation of duct endings and secretion of additional matrix as the worm pulls away from the substrate. The change in secretory type ratio putatively modifies the properties of the secreted matrix enabling detachment. Only after detachment do ducts refill. During attachment, individual secretory bodies undergo morphological changes. The larval and adult adhesive matrix differs. Anterior adhesive in oncomiracidia does not show fibres with banding whereas banded fibres comprise a large part of adult adhesive. The data Suggest that this is the result of adult spheroidal secretions modifying the way in which the adult adhesive matrix forms.
Resumo:
The organic matrix surrounding bullet-shaped, cubo-octahedral, D-shaped, irregular arrowhead-shaped, and truncated hexa-octahedral magnetosomes was analysed in a variety of uncultured magnetotactic bacteria. The matrix was examined using low- (80 kV) and intermediate- (400 kV) voltage TEM. It encapsulated magnetosomes in dehydrated cells, ultraviolet-B-irradiated dehydrated cells and stained resin-embedded fixed cells, so the apparent structure of the matrix does not appear to be an artefact of specimen preparation. High-resolution images revealed lattice fringes in the matrix surrounding magnetite and greigite magnetosomes that were aligned with lattice fringes in the encapsulated magnetosomes. In all except one case, the lattice fringes had widths equal to or twice the width of the corresponding lattice fringes in the magnetosomes. The lattice fringes in the matrix were aligned with the {311}, {220}, {331}, {111} and {391} related lattice planes of magnetite and the {222} lattice plane of greigite. An unidentified material, possibly an iron hydroxide, was detected in two immature magnetosomes containing magnetite. The unidentified phase had a structure similar to that of the matrix as it contained {311}, {220} and {111} lattice fringes, which indicates that the matrix acts as a template for the spatially controlled biomineralization of the unidentified phase, which itself transforms into magnetite. The unidentified phase was thus called pre-magnetite. The presence of the magnetosomal matrix explains all of the five properties of the biosignature of the magnetosomal chain proposed previously by Friedmann et al. and supports their claim that some of the magnetite particles in the carbonate globules in the Martian meteorite ALH84001 are biogenic. Two new morphologies of magnetite magnetosomes are also reported here (i.e. tooth-shaped and hexa-octahedral magnetosomes). Tooth-shaped magnetite magnetosomes elongated in the [110] direction are reported, and are distinct from arrowhead-shaped and bullet-shaped magnetosomes. Elongation of magnetite magnetosomes in the [110] direction has not been reported previously. A Martian hexa-octahedral magnetite particle was previously characterized by Thomas-Keptra et al. and compared with truncated hexa-octahedral magnetite magnetosomes. Hexa-octahedral magnetite magnetosomes with the same morphology and similar sizes and axial ratios as those reported by Thomas-Keptra et al. are characterized here. These observations support their claim that ALH84001 contains evidence for a past Martian biota.
Resumo:
atomic force microscopy (AFM); atom transfer radical polymerization (ATRP); block copolymers; self-assembly; silica nanoparticles.
Resumo:
The structures of multilayer Langmuir-Blodgett films of barium arachidate before and after heat treatment have been investigated using both atomic force microscopy (AFM) and grazing incidence synchrotron X-ray diffraction (GIXD). AFM gave information on surface morphology at molecular resolution while GIXD provided quantitative details of the lattice structures of the films with their crystal symmetries and lattice constants. As-prepared films contained three coexisting structures: two triclinic structures with the molecularchains tilted by about 20degrees from the film normal and with 3 x 1 or 2 x 2 super-lattice features arising from height modulation of the molecules in the films; a rectangular structure with molecules perpendicular to the film surface. Of these, the 3 x 1 structure is dominant with a loose correlation between the bilayers. In the film plane both superstructures are commensurate with the local structures, having different oblique symmetries. The lattice constants for the 3 x 1 structure are a(s) = 3a = 13.86 Angstrom, b(s) = b = 4.31 Angstrom and gamma(s) = gamma = 82.7degrees; for the 2 x 2 structure a(s) = 2a = 16.54 Angstrom, b(s) = 2b = 9.67 Angstrom, gamma(s) = gamma = 88degrees. For the rectangular structure the lattice constants are a = 7.39 Angstrom, b = 4.96 Angstrom and gamma = 90degrees. After annealing, the 2 x 2 and rectangular structures were not observed, while the 3 x 1 structure had developed over the entire film. For the annealed films the correlation length in the film plane is about twice that in the unheated films, and in the out-of-plane direction covers two bilayers. The above lattice parameters, determined by GIXD, differed significantly from the values obtained by AFM, due possibly to distortion of the films by the scanning action of the AFM tip. (C) 2004 Published by Elsevier B.V.
Resumo:
We herein report the synthesis of organic-inorganic hybrid poly(methyl methacrylate) containing 1 polyhedral oligosilsesquioxanes. Octakis(3-hydroxypropyldimethylsiloxy)octasilsesquioxane (OHPS) was synthesized from octakis(hydridodimethylsiloxy)octasilsesquioxane [Si8O12(OSiMe2H)(8), Q(8)M(8)(H)] following literature procedures. Octakis(tnethacryloxypropyldimethylsiloxy) octasilsesquioxane (OMPS) was synthesized via the reaction of methacryloyl chloride or methacrylic acid anhydride with OHPS, with the latter giving improved purity. Polymerization of OMPS with methyl inethacrylate using a dibenzoylperoxide initiator gave a highly cross-linked polymer. Characterization of the polymer was performed using Fourier transform IR spectroscopy, Si-29 NMR, differential scanning calorimetry, thermogravimetric analysis, atomic force microscopy, and transmission electron microscopy with energy-dispersive X-ray analysis. The polymer was found to be largely homogeneous. Increasing the OMPS concentration in the polymer gave increased decomposition and glass transition temperatures.
Resumo:
Controlled polishing procedures were used to produce both uniformly doped and p-n junction silicon samples with different interface state densities but identical oxide thicknesses. Using these samples, the effects of interface states on scanning capacitance microscopy (SCM) measurements could be singled out. SCM measurements on the junction samples were performed with and without illumination from the atomic force microscopy laser. Both the interface charges and the illumination were seen to affect the SCM signal near p-n junctions significantly. SCM p-n junction dopant profiling can be achieved by avoiding or correctly modeling these two factors in the experiment and in the simulation. (c) 2005 American Institute of Physics.
Resumo:
Zinc oxide single crystals implanted at room temperature with high-dose (1.4x10(17) cm(-2)) 300 keV As+ ions are annealed at 1000-1200 degrees C. Damage recovery is studied by a combination of Rutherford backscattering/channeling spectrometry (RBS/C), cross-sectional transmission electron microscopy (XTEM), and atomic force microscopy. Results show that such a thermal treatment leads to the decomposition and evaporation of the heavily damaged layer instead of apparent defect recovery and recrystallization that could be inferred from RBS/C and XTEM data alone. This study shows that heavily damaged ZnO has relatively poor thermal stability compared to as-grown ZnO which is a significant result and has implications for understanding results on thermal annealing of ion-implanted ZnO. (c) 2005 Americian Institute of Physics.
Resumo:
Van der Waals forces often dominate interactions and adhesion between fine particles and, in turn, decisively influence the bulk behaviour of powders. However, so far there is no effective means to characterize the adhesive behaviour of such particles. A complication is that most powder particles have rough surfaces, and it is the asperities on the surfaces that touch, confounding the actual surface that is in contact. Conventional approaches using surface energy provide limited information regarding adhesion, and pull-off forces measured through atomic force microscope (AFM) are highly variable and difficult to interpret. In this paper we develop a model which combines the Rumpf-Rabinovich and the JKR-DMT theories to account simultaneously for the effects of surface roughness and deformation on adhesion. This is applied to a 'characteristic asperity' which may be easily obtained from AFM measurements. The concept of adhesiveness, a material property reflecting the influences of elastic deformability, surface roughness, and interfacial surface energy, is introduced as an efficient and quantitative measure of the adhering tendency of a powder. Furthermore, a novel concept of specific adhesiveness is proposed as a convenient tool for characterizing and benchmarking solid materials. This paper provides an example to illustrate the use of the proposed theories. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We are using polymer templates to grow artificial artery grafts in vivo for the replacement of diseased blood vessels. We have previously shown that adhesion of macrophages to the template starts the graft formation. We present a study of the mechanics of macrophage adhesion to these templates on a single cell and single bond level with optical tweezers. For whole cells, in vitro cell adhesion densities decreased significantly from polymer templates polyethylene to silicone to Tygon (167, 135, and 65 cells/mm(2)). These cell densities were correlated with the graft formation success rate (50%, 25%, and 0%). Single-bond rupture forces at a loading rate of 450 pN/s were quantified by adhesion of trapped 2-mm spheres to macrophages. Rupture force distributions were dominated by nonspecific adhesion (forces, < 40 pN). On polystyrene, preadsorption of fibronectin or presence of serum proteins in the cell medium significantly enhanced adhesion strength from a mean rupture force of 20 pN to 28 pN or 33 pN, respectively. The enhancement of adhesion by fibronectin and serum is additive (mean rupture force of 43 pN). The fraction of specific binding forces in the presence of serum was similar for polystyrene and polymethyl-methacrylate, but specific binding forces were not observed for silica. Again, we found correlation to in vivo experiments, where the density of adherent cells is higher on polystyrene than on silica templates, and can be further enhanced by fibronectin adsorption. These findings show that in vitro adhesion testing can be used for template optimization and to substitute for in-vivo experiments.
Resumo:
In an experiment repeated for two separate years, incubation temperature was found to affect the body size and swimming performance of hatchling green turtles (Chelonia mydas). In the first year, hatchlings from eggs incubated at 26 degrees C were larger in size than hatchlings from 28 and 30 degrees C, whilst in the second year hatchlings from 25.5 degrees C were similar in size to hatchings from 30 degrees C. Clutch of origin influenced the size of hatchlings at all incubation temperatures even when differences in egg size were taken into account. In laboratory measurements of swimming performance, in seawater at 28 degrees C, hatchlings from eggs incubated at 25.5 and 26 degrees C had a lower stroke rate frequency and lower force output than hatchlings from 28 and 30 degrees C. These differences appeared to be caused by the muscles of hatchlings from cooler temperatures fatiguing at a faster rate. Clutch of origin did not influence swimming performance. This finding that hatchling males incubated at lower temperature had reduced swimming ability may affect their survival whilst running the gauntlet of predators in shallow near-shore waters, prior to reaching the relative safety of the open sea.
Resumo:
Issues of wear and tribology are increasingly important in computer hard drives as slider flying heights are becoming lower and disk protective coatings thinner to minimise spacing loss and allow higher areal density. Friction, stiction and wear between the slider and disk in a hard drive were studied using Accelerated Friction Test (AFT) apparatus. Contact Start Stop (CSS) and constant speed drag tests were performed using commercial rigid disks and two different air bearing slider types. Friction and stiction were captured during testing by a set of strain gauges. System parameters were varied to investigate their effect on tribology at the head/disk interface. Chosen parameters were disk spinning velocity, slider fly height, temperature, humidity and intercycle pause. The effect of different disk texturing methods was also studied. Models were proposed to explain the influence of these parameters on tribology. Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) were used to study head and disk topography at various test stages and to provide physical parameters to verify the models. X-ray Photoelectron Spectroscopy (XPS) was employed to identify surface composition and determine if any chemical changes had occurred as a result of testing. The parameters most likely to influence the interface were identified for both CSS and drag testing. Neural Network modelling was used to substantiate results. Topographical AFM scans of disk and slider were exported numerically to file and explored extensively. Techniques were developed which improved line and area analysis. A method for detecting surface contacts was also deduced, results supported and explained observed AFT behaviour. Finally surfaces were computer generated to simulate real disk scans, this allowed contact analysis of many types of surface to be performed. Conclusions were drawn about what disk characteristics most affected contacts and hence friction, stiction and wear.