993 resultados para FIRST LEGO League


Relevância:

20.00% 20.00%

Publicador:

Resumo:

First principles calculations using the augmented plane wave plus local orbitals method, as implemented in the WIEN2k code, have been used to investigate the electronic and magnetic properties of YBaFe2O5, especially as regards the charge-orbital ordering. Although the total 3d charge disproportion is rather small, an orbital order parameter defined as the difference between t(2g) orbital occupations of Fe2+ and Fe3+ cations is large (0,73) and gives unambiguous evidence for charge and orbital ordering: Strong hybridization between O 2p and Fe e(g) states results in the nearly complete loss of the separation between the total charges at the Fe2+ and Fe3+ atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The elastic anisotropy of the potential low compressible and hard materials OsB2 and RuB2 were studied by first-principles investigation within density functional theory. The structure, elastic constants, bulk modulus, shear modulus, Poisson's ratio and Debye temperature have been calculated within both local density approximation (LDA) and generalized gradient approximation (GGA). The results indicated that the calculated bulk modulus and shear modulus were in good agreement with the experimental and previous theoretical studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tetraoctyl-substituted vanadyl phthalocyanine (OVPc4C8) as a new NIR-absorbing discotic liquid crystalline material can form highly ordered thin films with edge-on alignment of the molecules and molecular packing mode identical to that in the phase II of OVPc for solution processed OTFTs with mobility up to 0.017 cm(2) V-1 s(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural, electronic, and mechanical properties of TaN were investigated by use of the density functional theory (DFT). Eight structures were considered, i.e.. hexagonal WC TaN, NiAs, wurtzite, and CoSn structures. cubic NaCl. zinc-blende and CsCl structures. The results indicate that TaN in TaN-type structure is the most stable at ambient conditions among the considered structures. Above 5 GPa, TaN in WC-type structure becomes energetically the most stable phase. They are also stable both thermodynamically and mechanically. TaN in WC-type has the largest shear Modulus 243 GPa and large bulk modulus 337 GPa among the considered structures. The Volume compressibility is slightly larger than diamond, but smaller than c-BN at pressures from 0 to 100 GPa. The compressibility along the c axis is smaller than the linear compressibility of both diamond and c-BN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural, electronic and magnetic properties of CaCu3Co4O12 were studied by use of the full-potential linearized augmented plane wave method. The calculated results indicate that CaCu3Co4O12 is stable both thermodynamically and mechanically. Both GGA (generalized gradient approximation) and GGA + U methods predict that CaCu3Co4O12 is metallic. The ferromagnetic configuration is only slightly more stable in energy compared with the non-magnetic configuration (3.7 meV), suggesting that they are competitive for being the ground state. Co is in the low spin state (S = 1/2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CaCu3Fe2Sb2O12 is mechanically stable, thermodynamically stable at pressures above 18 GPa. Both GGA and GGA + U methods predict that it is a ferrimagnetic semiconductor with Fe3+ in high spin state (S = 5/2). The coupling of Fe-Cu is antiferromagnetic, while that of Cu-Cu is ferromagnetic. The calculated total spin moment is 6.17 mu(B).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural, mechanical and electronic properties Of OsC2 were investigated by use of the density functional theory. Seven structures were considered, i.e., orthorhombic Cmca (No. 12, OsSi2), Pmmn (No. 59, 002) and Pnnm (No. 58, OsN2); tetragonal P4(2)/mnm (No. 136, OsO2) and 14/mmm (No. 139, CaC2); cubic Fm-3m (No. 225, CaF2) and Pa-3 (No. 205, PtN2). The results indicate that Cmca in OsSi2 type structure is energetically the most stable phase among the considered structures. It is also stable mechanically. OsC2 in Pmmn phase has the largest bulk modulus 319 GPa and shear modulus 194 GPa. The elastic anisotropy is discussed. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on density functional theory, we systematically studied the electronic and magnetic properties of the real experimental structural phase BiCrO3 with the space group C2/c. It is found that the ground state is a moderately correlated Mott-Hubbard insulator with G-type antiferromagnetic structure, which is in agreement with the experimental observations. The magnetism can be qualitatively understood in terms of the superexchange mechanism via Cr1(t(2g))-O 2p-Cr-2(t(2g)). Moreover, the total energies calculated for various magnetic orderings lead to an estimate of the magnetic interaction constants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

First principles calculations were performed to investigate the structural, elastic, and electronic properties of IrN2 for various space groups: cubic Fm-3m and Pa-3, hexagonal P3(2)21, tetragonal P4(2)/mnm, orthorhombic Pmmn, Pnnm, and Pnn2, and monoclinic P2(1)/c. Our calculation indicates that the P2(1)/c phase with arsenopyrite-type structure is energetically more stable than the other phases. It is semiconducting (the remaining phases are metallic) and contains diatomic N-N with the bond distance of 1.414 A. These characters are consistent with the experimental facts that IrN2 is in lower symmetry and nonmetallic. Our conclusion is also in agreement with the recent theoretical studies that the most stable phase of IrN2 is monoclinic P2(1)/c. The calculated bulk modulus of 373 GPa is also the highest among the considered space groups. It matches the recent theoretical values of 357 GPa within 4.3% and of 402 GPa within 7.8%, but smaller than the experimental value of 428 GPa by 14.7%. Chemical bonding and potential displacive phase transitions are discussed for IrN2. For IrN3, cubic skutterudite structure (Im-3) was assumed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure, elastic, and electronic properties of OsN2 at various space groups: cubic Fm-3m, Pa-3, and orthorhombic Pnnm were studied by first-principles calculations based on density functional theory. Our calculation indicates that the structure in orthorhombic Pnnm phase is energetically more stable compared with cubic systems. It is metallic, mechanically stable and contains diatomic N-N units with the bond distance 1.418 A. These characters are consistent with experimental facts that OsN2 is orthorhombic and metallic. The calculated bulk modulus 394 GPa is also the highest among the considered space groups, slightly larger than previous value 358 GPa. The calculated elastic anisotropic factors and directional bulk modulus showed that OsN2 possess high elastic anisotropy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the electronic structure of the d-electron heavy-fermion system CaCu3Ru4O12 by use of the full-potential linearized augmented plane wave method. Our results indicate that the compound is a paramagnetic metal, in agreement with the experimental observation. The conductivity of the compound is governed by two main factors. One is the Ru-O dp pi coupling around the Fermi energy level, which makes Ru-O-Ru networks conductive. The other is the hybridization between the itinerant Ru 4d electrons and the localized Cu 3d (dz(2) and part of dx(2)-y(2) and dxy) electrons through O 2p orbitals in the energy region from -2.0 to -1.0 eV. The Ru-O-Cu interaction makes the localized Cu electrons start to be itinerant through the coupling with Ru 4d electrons. This results in Ru-O-Cu networks being conductive. Therefore, in the title compound, both Ru-O-Ru and Ru-O-Cu networks contribute to the conducting behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

First principles calculations are performed to investigate the elastic and electronic properties of MFe3N (M=Co,Rh,Ir) at Pm-3m space group. The authors' calculation indicates that the three MFe3N phases are metallic and mechanically stable. For RhFe3N, the calculated lattice parameter of 3.826 A is in excellent agreement with the experimental value of 3.8292 A. The three phases are ferromagnetic with the calculated magnetic moments per f.u. being 8.92 mu(B) for CoFe3N, 9.04 mu(B) for RhFe3N, and 8.50 mu(B) for IrFe3N. The unusually large B/G ratio from 2.47 for CoFe3N and 2.45 for RhFe3N to 1.81 for IrFe3N indicates that they are ductile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural stability and physical properties of CaCu3Fe4O12 were studied by the use of the full-potential linearized augmented plane wave method. The authors' calculated result indicates that the title compound is stable both thermodynamically and mechanically. It is ferrimagnetic and half-metallic. The calculated magnetic structure reveals that the coupling of Cu-Fe is antiferromagnetic, while those of Cu-Cu and Fe-Fe are ferromagnetic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic and magnetic properties of CaCu3Cr4O12 and CaCu3Cr2Sb2O12 are investigated by the use of the full-potential linearized augumented plane wave (FPLAPW) method. The calculated results indicate that CaCu3- Cr4O12 is a ferrimagnetic and half-metallic compound, in good agreement with previous theoretical studies. CaCu3- Cr2Sb2O12 is a ferrimagnetic semiconductor with a small gap of 0.136 eV. In both compounds, because Cr4+ 3d (d(2)) and Cr3+ 3d (d(3)) orbitals are less than half filled, the coupling between Cr-Cu is antiferromagnetic, whereas that between Cu-Cu and Cr-Cr is ferromagnetic. The total net spin moment is 5.0 and 3.0 mu(B) for CaCu3Cr4O12 and CaCu3Cr2Sb2O12, respectively. In CaCu3Cr4O12, the 3d electrons of Cr4+ are delocalized, which strengthens the Cr-Cr ferromagnetic coupling. For CaCu3Cr2Sb2O12, the doping of nonmagnetic ion Sb5+ reduces the Cr-Cr ferromagnetic coupling, and the half-filled Cr3+ t(2g) (t(2g)(3)) makes the chromium 3d electrons localized. In addition, the ordering arrangement of the octahedral chromium and antimony ions also prevents the delocalization of electrons. Hence, CaCu3Cr2Sb2O12 shows insulating behavior, in agreement with the experimental observation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The elastic, magnetic and electronic properties of MFe3N (M = Fe, Ru, Os) are investigated via first-principles calculations. The calculated results are in agreement with the experimental and other theoretical data. The high ratios of bulk modulus to shear modulus 2.7, 2.0, and 1.8 for gamma'-Fe4N, RuFe3N, and OsFe3N, respectively, indicate that they have good ductility. gamma'-Fe4N possesses the largest B/C-44 (3.41) ratio, which suggests that it is much prone to shearing. The net magnetic moment per formula unit decreases from 9.90 for gamma'-Fe4N, 7.66 for RuFe3N, to 6.80 mu(B) for OsFe3N.