911 resultados para FIELD-INDUCED OXIDATION
Resumo:
Magnetism and magnetic materials have been playing a lead role in the day to day life of human beings. The human kind owes its gratitude to the ‘lodestone’ meaning ‘leading stone’ which lead to the discovery of nations and the onset of modern civilizations. If it was William Gilbert, who first stated that ‘earth was a giant magnet’, then it was the turn of Faraday who correlated electricity and magnetism. Magnetic materials find innumerable applications in the form of inductors, read and write heads, motors, storage devices, magnetic resonance imaging and fusion reactors. Now the industry of magnetic materials has almost surpassed the semiconductor industry and this speaks volumes about its importance. Extensive research is being carried out by scientists and engineers to remove obsolescence and invent new devices. Though magnetism can be categorized based on the response of an applied magnetic field in to diamagnetic, paramagnetic, ferromagnetic, ferrimagnetic and antiferromagnetic; it is ferrimagnetic, ferromagnetic and antiferromagnetic materials which have potential applications. The present thesis focusses on these materials, their composite structures and different ways and means to modify their properties for useful applications. In the past, metals like Fe, Ni and Co were sought after for various applications though iron was in the forefront because of its cost effectiveness and abundance. Later, alloys based on Fe and Ni were increasingly employed. They were used in magnetic heads and in inductors. Ferrites entered the arena and subsequently most of the newer applications were based on ferrites, a ferrimagnetic material, whose composition can be tuned to tailor the magnetic properties. In the late 1950s a new class of magnetic material emerged on the magnetic horizon and they were fondly known as metallic glasses. They are well known for their soft magnetic properties. They were synthesized in the form of melt spun ribbons and are amorphous in nature and they are projected to replace the crystalline counterparts.
Resumo:
Magnetism and magnetic materials have been playing a lead role in the day to day life of human beings. The human kind owes its gratitude to the ‘lodestone’ meaning ‘leading stone’ which lead to the discovery of nations and the onset of modern civilizations. If it was William Gilbert, who first stated that ‘earth was a giant magnet’, then it was the turn of Faraday who correlated electricity and magnetism. Magnetic materials find innumerable applications in the form of inductors, read and write heads, motors, storage devices, magnetic resonance imaging and fusion reactors. Now the industry of magnetic materials has almost surpassed the semiconductor industry and this speaks volumes about its importance. Extensive research is being carried out by scientists and engineers to remove obsolescence and invent new devices. Though magnetism can be categorized based on the response of an applied magnetic field in to diamagnetic, paramagnetic, ferromagnetic, ferrimagnetic and antiferromagnetic; it is ferrimagnetic, ferromagnetic and antiferromagnetic materials which have potential applications. The present thesis focusses on these materials, their composite structures and different ways and means to modify their properties for useful applications.
Resumo:
Abstract : The major objective of our study is to investigate DNA damage induced by soft X-rays (1.5 keV) and low-energy electrons (˂ 30 eV) using a novel irradiation system created by Prof. Sanche’s group. Thin films of double-stranded DNA are deposited on either glass and tantalum substrates and irradiated under standard temperature and pressure surrounded by a N[subscript 2] environment. Base release (cytosine, thymine, adenine and guanine) and base modifications (8-oxo-7,8-dihydro -2’-deoxyguanosine, 5-hydroxymethyl-2’-deoxyuridine, 5-formyl-2’-deoxyuridine, 5,6-dihydrothymidine and 5,6-dihydro-2’-deoxy uridine) are analyzed and quantified by LC-MS/MS. Our results reveal larger damage yields in the sample deposited on tantalum than those on glass. This can be explained by an enhancement of damage due to low-energy electrons, which are emitted from the metal substrate. From a comparison of the yield of products, base release is the major type of damage especially for purine bases, which are 3-fold greater than base modifications. A proposed pathway leading to base release involves the formation of a transient negative ion (TNI) followed by dissociative electron attachment (DEA) at the N-g lycosidic bond. On the other hand, base modification products consist of two major types of chemical modifications, which include thymine methyl oxidation products that likely arises from DEA from the methyl group of thymine, and 5,6-dihydropyrimidine that can involve the initial addition of electrons, H atoms, or hydride ions to the 5,6-pyrimidine double bond.
Resumo:
On March 11 2011, an exceptionally large tsunami event was triggered by a massive earthquake offshore, the northeast coast of Japan, which affected coastal infrastructure such as seawalls, coastal dikes and breakwaters in the Tohoku region. Such infrastructure was built to protect against the Level 1 tsunamis that previously hit the region, but not for events as significant as the 2011 Tohoku tsunami, which was categorized as a Level 2 tsunami [Shibayama et al. 2013]. The failure mechanisms of concrete-armoured dikes, breakwaters and seawalls due to Level 2 tsunamis are still not fully understood by researchers and engineers. This paper investigates the failure modes and mechanisms of damaged coastal structures in Miyagi and Fukushima Prefectures, following the authors' post-disaster field surveys carried out between 2011 and 2013. Six significant failure mechanisms were identified for the coastal dikes and seawalls affected by this tsunami: 1) Leeward toe scour failure, 2) Crown armour failure, 3) Leeward slope armour failure, 4) Seaward toe and armour failure, 5) Overturning failure, and 6) Parapet wall failure, in which leeward toe scour being recognized as the major failure mechanism in most surveyed locations. The authors also propose a simple practical mathematical model for predicting the scour depth at the leeward toe of the coastal dikes, by considering the effects of the tsunami hydrodynamics, the soil properties and the type of structure. The key advantage of this model is that it depends entirely on quantities that are measurable in the field. Furthermore this model was further refined by conducting a series of hydraulic model experiments aimed to understand the governing factors of the leeward toe scour failure. Finally, based on the results obtained, key recommendations are given for the design of resilient coastal defence structures that can survive a level 2 tsunami event.
Resumo:
We know that classical thermodynamics even out of equilibrium always leads to stable situation which means degradation and consequently d sorder. Many experimental evidences in different fields show that gradation and order (symmetry breaking) during time and space evolution may appear when maintaining the system far from equilibrium. Order through fluctuations, stochastic processes which occur around critical points and dissipative structures are the fundamental background of the Prigogine-Glansdorff and Nicolis theory. The thermodynamics of macroscopic fluctuations to stochastic approach as well as the kinetic deterministic laws allow a better understanding of the peculiar fascinating behavior of organized matter. The reason for the occurence of this situation is directly related to intrinsic non linearities of the different mechanisms responsible for the evolution of the system. Moreover, when dealing with interfaces separating two immiscible phases (liquid - gas, liquid -liquid, liquid - solid, solid - solid), the situation is rather more complicated. Indeed coupling terms playing the major role in the conditions of instability arise from the peculiar singular static and dynamic properties of the surface and of its vicinity. In other words, the non linearities are not only intrinsic to classical steps involving feedbacks, but they may be imbedded with the non-autonomous character of the surface properties. In order to illustrate our goal we discuss three examples of ordering in far from equilibrium conditions: i) formation of chemical structures during the oxidation of metals and alloys; ii) formation of mechanical structures during the oxidation of metals iii) formation of patterns at a solid-liquid moving interface due to supercooling condition in a melt of alloy. © 1984, Walter de Gruyter. All rights reserved.
Resumo:
Tsunamis occur quite frequently following large magnitude earthquakes along the Chilean coast. Most of these earthquakes occur along the Peru-Chile Trench, one of the most seismically active subduction zones of the world. This study aims to understand better the characteristics of the tsunamis triggered along the Peru-Chile Trench. We investigate the tsunamis induced by the Mw8.3 Illapel, the Mw8.2 Iquique and the Mw8.8 Maule Chilean earthquakes that happened on September 16th, 2015, April 1st, 2014 and February 27th, 2010, respectively. The study involves the relation between the co-seismic deformation and the tsunami generation, the near-field tsunami propagation, and the spectral analysis of the recorded tsunami signals in the near-field. We compare the tsunami characteristics to highlight the possible similarities between the three events and, therefore, attempt to distinguish the specific characteristics of the tsunamis occurring along the Peru-Chile Trench. We find that these three earthquakes present faults with important extensions beneath the continent which result in the generation of tsunamis with short wavelengths, relative to the fault widths involved, and with reduced initial potential energy. In addition, the presence of the Chilean continental margin, that includes the shelf of shallow bathymetry and the continental slope, constrains the tsunami propagation and the coastal impact. All these factors contribute to a concentrated local impact but can, on the other hand, reduce the far-field tsunami effects from earthquakes along Peru-Chile Trench.
Resumo:
Abstract: It is well established that ionizing radiation induces a variety of damage in DNA by direct effects that are mediated by one-electron oxidation and indirect effects that are mediated by the reaction of water radiolysis products, e.g., hydroxyl radicals (•OH). In cellular DNA, direct and indirect effects appear to have about an equal effect toward DNA damage. We have shown that ϒ-(gamma) ray irradiation of aqueous solutions of DNA, during which •OH is the major damaging ROS can lead to the formation several lesions. On the other hand, the methylation and oxidative demethylation of cytosine in CpG dinucleotides plays a critical role in the gene regulation. The C5 position of cytosine in CG dinucleotides is frequently methylated by DNA methyl transferees (DNMTs) and constitutes 4-5% of the total cytosine. Here, my PhD research work focuses on the analysis of oxidative base modifications of model compounds of methylated and non methylated oligonucleotides, isolated DNA (calf-thymus DNA) and F98 cultured cell by gamma radiation. In addition, we identified a series of modifications of the 2-deoxyribose moiety of DNA arising from the exposure of isolated and cellular DNA to ionizing radiation. We also studied one electron oxidation of cellular DNA in cultured human HeLa cells initiated by intense nanosecond 266 nm laser pulse irradiation, which produces cross-links between guanine and thymine bases (G*-T*). To achieve these goals, we developed several methods based on mass spectrometry to analyze base modifications in isolated DNA and cellular DNA.
Resumo:
Current coastal-evolution models generally lack the ability to accurately predict bed level change in shallow (<~2 m) water, which is, at least partly, due to the preclusion of the effect of surface-induced turbulence on sand suspension and transport. As a first step to remedy this situation, we investigated the vertical structure of turbulence in the surf and swash zone using measurements collected under random shoaling and plunging waves on a steep (initially 1:15) field-scale sandy laboratory beach. Seaward of the swash zone, turbulence was measured with a vertical array of three Acoustic Doppler Velocimeters (ADVs), while in the swash zone two vertically spaced acoustic doppler velocimeter profilers (Vectrino profilers) were applied. The vertical turbulence structure evolves from bottom-dominated to approximately vertically uniform with an increase in the fraction of breaking waves to ~ 50%. In the swash zone, the turbulence is predominantly bottom-induced during the backwash and shows a homogeneous turbulence profile during uprush. We further find that the instantaneous turbulence kinetic energy is phase-coupled with the short-wave orbital motion under the plunging breakers, with higher levels shortly after the reversal from offshore to onshore motion (i.e. wavefront).
Resumo:
This thesis describes a collection of studies into the electrical response of a III-V MOS stack comprising metal/GaGdO/GaAs layers as a function of fabrication process variables and the findings of those studies. As a result of this work, areas of improvement in the gate process module of a III-V heterostructure MOSFET were identified. Compared to traditional bulk silicon MOSFET design, one featuring a III-V channel heterostructure with a high-dielectric-constant oxide as the gate insulator provides numerous benefits, for example: the insulator can be made thicker for the same capacitance, the operating voltage can be made lower for the same current output, and improved output characteristics can be achieved without reducing the channel length further. It is known that transistors composed of III-V materials are most susceptible to damage induced by radiation and plasma processing. These devices utilise sub-10 nm gate dielectric films, which are prone to contamination, degradation and damage. Therefore, throughout the course of this work, process damage and contamination issues, as well as various techniques to mitigate or prevent those have been investigated through comparative studies of III-V MOS capacitors and transistors comprising various forms of metal gates, various thicknesses of GaGdO dielectric, and a number of GaAs-based semiconductor layer structures. Transistors which were fabricated before this work commenced, showed problems with threshold voltage control. Specifically, MOSFETs designed for normally-off (VTH > 0) operation exhibited below-zero threshold voltages. With the results obtained during this work, it was possible to gain an understanding of why the transistor threshold voltage shifts as the gate length decreases and of what pulls the threshold voltage downwards preventing normally-off device operation. Two main culprits for the negative VTH shift were found. The first was radiation damage induced by the gate metal deposition process, which can be prevented by slowing down the deposition rate. The second was the layer of gold added on top of platinum in the gate metal stack which reduces the effective work function of the whole gate due to its electronegativity properties. Since the device was designed for a platinum-only gate, this could explain the below zero VTH. This could be prevented either by using a platinum-only gate, or by matching the layer structure design and the actual gate metal used for the future devices. Post-metallisation thermal anneal was shown to mitigate both these effects. However, if post-metallisation annealing is used, care should be taken to ensure it is performed before the ohmic contacts are formed as the thermal treatment was shown to degrade the source/drain contacts. In addition, the programme of studies this thesis describes, also found that if the gate contact is deposited before the source/drain contacts, it causes a shift in threshold voltage towards negative values as the gate length decreases, because the ohmic contact anneal process affects the properties of the underlying material differently depending on whether it is covered with the gate metal or not. In terms of surface contamination; this work found that it causes device-to-device parameter variation, and a plasma clean is therefore essential. This work also demonstrated that the parasitic capacitances in the system, namely the contact periphery dependent gate-ohmic capacitance, plays a significant role in the total gate capacitance. This is true to such an extent that reducing the distance between the gate and the source/drain ohmic contacts in the device would help with shifting the threshold voltages closely towards the designed values. The findings made available by the collection of experiments performed for this work have two major applications. Firstly, these findings provide useful data in the study of the possible phenomena taking place inside the metal/GaGdO/GaAs layers and interfaces as the result of chemical processes applied to it. In addition, these findings allow recommendations as to how to best approach fabrication of devices utilising these layers.
Resumo:
Mortality of young Pacific oysters Crassostrea gigas associated with the ostreid herpesvirus 1 (OsHV-1) is occurring worldwide. Here, we examined for the first time the effect of salinity on OsHV-1 transmission and disease-related mortality of C. gigas, as well as salinity-related effects on the pathogen itself. To obtain donors for OsHV-1 transmission, we transferred laboratory-raised oysters to an estuary during a disease outbreak and then back to the laboratory. Oysters that tested OsHV-1 positive were placed in seawater tanks (35‰, 21°C). Water from these tanks was used to infect naïve oysters in 2 experimental setups: (1) oysters acclimated or non-acclimated to a salinity of 10, 15, 25 and 35‰ and (2) oysters acclimated to a salinity of 25‰; the latter were exposed to OsHV-1 water diluted to a salinity of 10 or 25‰. The survival of oysters exposed to OsHV-1 water and acclimated to a salinity of 10‰ was >95%, compared to only 43 to 73% survival in oysters acclimated to higher salinities (Expt 1), reflecting differences in the levels of OsHV-1 DNA and viral gene expression (Expts 1 and 2). However, the survival of their non-acclimated counterparts was only 23% (Expt 2), and the levels of OsHV-1 DNA and the expression of 4 viral genes were low (Expt 1). Thus, OsHV-1 may not have been the ultimate cause of mortality in non-acclimated oysters weakened by a salinity shock. It appears that reducing disease risk by means of low salinity is unlikely in the field.
Resumo:
Purpose: To investigate the effect of Dipsacus asperoides (Xue Duan), a traditional Chinese medicine, on rats with spinal cord injury (SCI). Methods: In this study a total of 40 adult rats were used after inducing SCI where Xue Duan was applied on experimental group and phosphate-buffered saline (PBS) was administered in corresponding control groups. Intraperitoneal administration of both compounds for a period of four weeks (28 days) was carried out at a dose of 10 mg/kg/day. Bright field microscopy was performed on the tissues. Results: Bright Field microscopy of tissue sections showed significant reduction in cavity area that resulted from injury, that is from 0.19 ± 0.05 mm2 to 0.09 ± 0.03 mm2 (p < 0.01) in untreated and treated groups respectively. Similarly western blotting results showed a decrease in the expression of NF-kB p65 and I-kBα (p < 0.01). These two compounds are important in increasing secondary pathophysiology in SCI. The results for MPO activity also revealed significantly reduced infiltration of leukocytes to the injury site (p < 0.01). Conclusion: This study reveals the positive effect of the plant material in reducing inflammation in rats with traumatic SCI.
Resumo:
Purpose: To evaluate the protective effects of Cuminum cyminum Linn (Apiaceae, CCY) against 1- methyl-4 phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced oxidative stress and behavioral impairments in mouse model of Parkinson’s disease (PD). Methods: MPTP-intoxicated mice model of PD was used for evaluating the effect of CCY extract on behavioral deficits through rota rod, passive avoidance and open field tasks. The effect of CCY extract on oxidative stress levels were assessed by estimating enzyme status, including superoxide dismutase (SOD), catalase (CAT) and lipid peroxidation(LPO) in brain tissues of MPTP-induced mice. Results: MPTP (25 mg/kg, i.p.)-treated mice resulted in a significant (p < 0.001) behavioral deficit in locomotor behavior (from 56.24 ± 1.21 to 27.64 ± 0.94) and cognitive functions (from 298 ± 3.68 s to 207.28 ± 4.12 s) compared with their respective control groups. Administration of CCY extract (100, 200 and 300 mg/kg, p.o.) for three weeks significantly and dose-dependently improved (p < 0.001 at 300 mg/kg) locomotor and cognitive deficits in MPTP-treated mice. CCY treatment also significantly (p < 0.001 at 300 mg/kg) inhibited MPTP-induced decrease in antioxidant enzyme levels (superoxide dismutase and catalase) and lipid peroxides in mice brain tissues. Conclusion: CCY extract exhibits strong protection against MPTP-induced behavioral deficit through enhancement of antioxidant defense mechanisms. Therefore, CCY may be developed as a therapeutic strategy in the treatment of neurodegeneration seen in PD.
Resumo:
A distributed network of cortical and subcortical brain regions mediates the control of voluntary behavior, but it is unclear how this complex system may flexibly shift between different behavioral events. This thesis describes the neurophysiological changes in several key nuclei across the brain during flexible behavior, using saccadic eye movements in rhesus macaque monkeys. We examined five nuclei critical for saccade initiation and modulation: the frontal eye field (FEF) in the cerebral cortex, the subthalamic nucleus (STN), caudate nucleus (CD), and substantia nigra pars reticulata (SNr) in the basal ganglia (BG), and the superior colliculus (SC) in the midbrain. The first study tested whether a ‘threshold’ theory of how neuronal activity cues saccade initiation is consistent with the flexible control of behavior. The theory suggests there is a fixed level of FEF and SC neuronal activation at which saccades are initiated. Our results provide strong evidence against a fixed saccade threshold in either structure during flexible behavior, and indicate that threshold variability might depend on the level of inhibitory signals applied to the FEF or SC. The next two studies investigated the BG network as a likely candidate to modulate a saccade initiation mechanism, based on strong inhibitory output signals from the BG to the FEF and SC. We investigated the STN and CD (BG input), and the SNr (BG oculomotor output) to examine changes across the BG network. This revealed robust task-contingent shifts in BG signaling (Chapter 3), which uniquely impacted saccade initiation according to behavioral condition (Chapters 3 and 4). The thesis concludes with a published short review of the mechanistic effects of BG deep brain stimulation (Chapter 5), and a general discussion including proof of concept saccade behavioral changes in an MPTP-induced Parkinsonian model (Chapter 6). The studies presented here demonstrate that the conditions for saccade initiation by the FEF and SC vary according to behavioral condition, while simultaneously, large-scale task dependent shifts occur in BG signaling consistent with the observed modulation of FEF and SC activity. Taken together, these describe a mechanistic framework by which the cortico-BG loop may contribute to the flexible control of behavior.
Resumo:
Chronic sustained hypoxia (CH) induces structural and functional adaptations in respiratory muscles of animal models, however the underlying molecular mechanisms are unclear. This study explores the putative role of CH-induced redox remodeling in a translational mouse model, with a focus on the sternohyoid—a representative upper airway dilator muscle involved in the control of pharyngeal airway caliber. We hypothesized that exposure to CH induces redox disturbance in mouse sternohyoid muscle in a time-dependent manner affecting metabolic capacity and contractile performance. C57Bl6/J mice were exposed to normoxia or normobaric CH (FiO2 = 0.1) for 1, 3, or 6 weeks. A second cohort of animals was exposed to CH for 6 weeks with and without antioxidant supplementation (tempol or N-acetyl cysteine in the drinking water). Following CH exposure, we performed 2D redox proteomics with mass spectrometry, metabolic enzyme activity assays, and cell-signaling assays. Additionally, we assessed isotonic contractile and endurance properties ex vivo. Temporal changes in protein oxidation and glycolytic enzyme activities were observed. Redox modulation of sternohyoid muscle proteins key to contraction, metabolism and cellular homeostasis was identified. There was no change in redox-sensitive proteasome activity or HIF-1α content, but CH decreased phospho-JNK content independent of antioxidant supplementation. CH was detrimental to sternohyoid force- and power-generating capacity and this was prevented by chronic antioxidant supplementation. We conclude that CH causes upper airway dilator muscle dysfunction due to redox modulation of proteins key to function and homeostasis. Such changes could serve to further disrupt respiratory homeostasis in diseases characterized by CH such as chronic obstructive pulmonary disease. Antioxidants may have potential use as an adjunctive therapy in hypoxic respiratory disease.
Resumo:
Mechanisms contributing to pulmonary and systemic injury induced by high tidal volume (VT) mechanical ventilation are not well known. We tested the hypothesis that increased peroxynitrite formation is involved in organ injury and dysfunction induced by mechanical ventilation. Male Sprague-Dawley rats were subject to low- (VT, 9 mL/kg; positive end-expiratory pressure, 5 cmH2O) or high- (VT, 25 mL/kg; positive end-expiratory pressure, 0 cmH2O) VT mechanical ventilation for 120 min, and received 1 of 3 treatments: 3-aminobenzamide (3-AB, 10 mg/kg, intravenous, a poly adenosine diphosphate ribose polymerase [PARP] inhibitor), or the metalloporphyrin manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP, 5 mg/kg intravenous, a peroxynitrite scavenger), or no treatment (control group), 30 min before starting the mechanical ventilation protocol (n = 8 per group, 6 treatment groups). We measured mean arterial pressure, peak inspiratory airway pressure, blood chemistry, and gas exchange. Oxidation (fluorescence for oxidized dihydroethidium), protein nitration (immunofluorescence and Western blot for 3-nitrotyrosine), PARP protein (Western blot) and gene expression of the nitric oxide (NO) synthase (NOS) isoforms (quantitative real-time reverse transcription polymerase chain reaction) were measured in lung and vascular tissue. Lung injury was quantified by light microscopy. High-VT mechanical ventilation was associated with hypotension, increased peak inspiratory airway pressure, worsened oxygenation; oxidation and protein nitration in lung and aortic tissue; increased PARP protein in lung; up-regulation of NOS isoforms in lung tissue; signs of diffuse alveolar damage at histological examination. Treatment with 3AB or MnTMPyP attenuated the high-VT mechanical ventilation-induced changes in pulmonary and cardiovascular function; down-regulated the expression of NOS1, NOS2, and NOS3; decreased oxidation and nitration in lung and aortic tissue; and attenuated histological changes. Increased peroxynitrite formation is involved in mechanical ventilation-induced pulmonary and vascular dysfunction.