947 resultados para Expression regulation
Resumo:
MicroRNAs (miRNAs) play a variety of roles in diverse biological processes at the post-transcriptional regulatory level. Although numerous miRNAs have been identified in parasitic helminths, we still know little about their biological functions. As molecular signatures that can be stably detectable in serum and plasma, worm-derived miRNAs have shown promise as markers for the early detection of particular helminth infections. In addition, host miRNAs are dysregulated during the development of pathology associated with helminthiases and show potential as therapeutic intervention targets. This review discusses the possible biological roles of helminth miRNAs, the prediction of their specific targets, their application in diagnosis and anti-pathology therapy interventions, and the potential functions of miRNAs in extracellular vesicle cargo, such as exosomes, in helminth-host interplay.
Resumo:
BACKGROUND: Proteins belonging to the serine protease inhibitor (serpin) superfamily play essential physiological roles in many organisms. In pathogens, serpins are thought to have evolved specifically to limit host immune responses by interfering with the host immune-stimulatory signals. Serpins are less well characterised in parasitic helminths, although some are thought to be involved in mechanisms associated with host immune modulation. In this study, we cloned and partially characterised a secretory serpin from Schistosoma japonicum termed SjB6, these findings provide the basis for possible functional roles.
METHODS: SjB6 gene was identified through database mining of our previously published microarray data, cloned and detailed sequence and structural analysis and comparative modelling carried out using various bioinformatics and proteomics tools. Gene transcriptional profiling was determined by real-time PCR and the expression of native protein determined by immunoblotting. An immunological profile of the recombinant protein produced in insect cells was determined by ELISA.
RESULTS: SjB6 contains an open reading frame of 1160 base pairs that encodes a protein of 387 amino acid residues. Detailed sequence analysis, comparative modelling and structural-based alignment revealed that SjB6 contains the essential structural motifs and consensus secondary structures typical of inhibitory serpins. The presence of an N-terminal signal sequence indicated that SjB6 is a secretory protein. Real-time data indicated that SjB6 is expressed exclusively in the intra-mammalian stage of the parasite life cycle with its highest expression levels in the egg stage (p < 0.0001). The native protein is approximately 60 kDa in size and recombinant SjB6 (rSjB6) was recognised strongly by sera from rats experimentally infected with S. japonicum.
CONCLUSIONS: The significantly high expression of SjB6 in schistosome eggs, when compared to other life cycle stages, suggests a possible association with disease pathology, while the strong reactivity of sera from experimentally infected rats against rSjB6 suggests that native SjB6 is released into host tissue and induces an immune response. This study presents a comprehensive demonstration of sequence and structural-based analysis of a secretory serpin from a trematode and suggests SjB6 may be associated with important functional roles in S. japonicum, particularly in parasite modulation of the host microenvironment.
Resumo:
PURPOSE: The prognostic significance of ATM mutations in chronic lymphocytic leukemia (CLL) is unclear. We assessed their impact in the context of a prospective randomized trial. PATIENTS AND METHODS: We analyzed the ATM gene in 224 patients treated on the Leukemia Research Fund Chronic Lymphocytic Leukemia 4 (LRF-CLL4) trial with chlorambucil or fludarabine with and without cyclophosphamide. ATM status was analyzed by denaturing high-performance liquid chromatography and was related to treatment response, survival, and the impact of TP53 alterations for the same patient cohort. RESULTS: We identified 36 ATM mutations in 33 tumors, 16 with and 17 without 11q deletion. Mutations were associated with advanced disease stage and involvement of multiple lymphoid sites. Patients with both ATM mutation and 11q deletion showed significantly reduced progression-free survival (median, 7.4 months) compared with those with ATM wild type (28.6 months), 11q deletion alone (17.1 months), or ATM mutation alone (30.8 months), but survival was similar to that in patients with monoallelic (6.7 months) or biallelic (3.4 months) TP53 alterations. This effect was independent of treatment, immunoglobulin heavy chain variable gene (IGHV) status, age, sex, or disease stage. Overall survival for patients with biallelic ATM alterations was also significantly reduced compared with those with ATM wild type or ATM mutation alone (median, 42.2 v 85.5 v 77.6 months, respectively). CONCLUSION: The combination of 11q deletion and ATM mutation in CLL is associated with significantly shorter progression-free and overall survival following first-line treatment with alkylating agents and purine analogs. Assessment of ATM mutation status in patients with 11q deletion may influence the choice of subsequent therapy.
Resumo:
Tumor genomic instability and selective treatment pressures result in clonal disease evolution; molecular stratification for molecularly targeted drug administration requires repeated access to tumor DNA. We hypothesized that circulating plasma DNA (cpDNA) in advanced cancer patients is largely derived from tumor, has prognostic utility, and can be utilized for multiplex tumor mutation sequencing when repeat biopsy is not feasible. We utilized the Sequenom MassArray System and OncoCarta panel for somatic mutation profiling. Matched samples, acquired from the same patient but at different time points were evaluated; these comprised formalin-fixed paraffin-embedded (FFPE) archival tumor tissue (primary and/or metastatic) and cpDNA. The feasibility, sensitivity, and specificity of this high-throughput, multiplex mutation detection approach was tested utilizing specimens acquired from 105 patients with solid tumors referred for participation in Phase I trials of molecularly targeted drugs. The median cpDNA concentration was 17 ng/ml (range: 0.5-1600); this was 3-fold higher than in healthy volunteers. Moreover, higher cpDNA concentrations associated with worse overall survival; there was an overall survival (OS) hazard ratio of 2.4 (95% CI 1.4, 4.2) for each 10-fold increase in cpDNA concentration and in multivariate analyses, cpDNA concentration, albumin, and performance status remained independent predictors of OS. These data suggest that plasma DNA in these cancer patients is largely derived from tumor. We also observed high detection concordance for critical 'hot-spot' mutations (KRAS, BRAF, PIK3CA) in matched cpDNA and archival tumor tissue, and important differences between archival tumor and cpDNA. This multiplex sequencing assay can be utilized to detect somatic mutations from plasma in advanced cancer patients, when safe repeat tumor biopsy is not feasible and genomic analysis of archival tumor is deemed insufficient. Overall, circulating nucleic acid biomarker studies have clinically important multi-purpose utility in advanced cancer patients and further studies to pursue their incorporation into the standard of care are warranted.
Resumo:
The ability to rearrange the germ-line DNA to generate antibody diversity is an essential prerequisite for the production of a functional repertoire. While this is essential to prevent infections, it also represents the "Achilles heel" of the B-cell lineage, occasionally leading to malignant transformation of these cells by translocation of protooncogenes into the immunoglobulin (Ig) loci. However, in evolutionary terms this is a small price to pay for a functional immune system. The study of the configuration and rearrangements of the Ig gene loci has contributed extensively to our understanding of the natural history of development of myeloma. In addition to this, the analysis of Ig gene rearrangements in B-cell neoplasms provides information about the clonal origin of the disease, prognosis, as well as providing a clinical useful tool for clonality detection and minimal residual disease monitoring. Herein, we review the data currently available on both Ig gene rearrangements and protein patterns seen in myeloma with the aim of illustrating how this knowledge has contributed to our understanding of the pathobiology of myeloma.
Resumo:
UNLABELLED: Translocation of effector proteins via a type III secretion system (T3SS) is a widespread infection strategy among Gram-negative bacterial pathogens. Each pathogen translocates a particular set of effectors that subvert cell signaling in a way that suits its particular infection cycle. However, as effector unbalance might lead to cytotoxicity, the pathogens must employ mechanisms that regulate the intracellular effector concentration. We present evidence that the effector EspZ controls T3SS effector translocation from enteropathogenic (EPEC) and enterohemorrhagic (EHEC) Escherichia coli. Consistently, an EPEC espZ mutant is highly cytotoxic. Following ectopic expression, we found that EspZ inhibited the formation of actin pedestals as it blocked the translocation of Tir, as well as other effectors, including Map and EspF. Moreover, during infection EspZ inhibited effector translocation following superinfection. Importantly, while EspZ of EHEC O157:H7 had a universal "translocation stop" activity, EspZ of EPEC inhibited effector translocation from typical EPEC strains but not from EHEC O157:H7 or its progenitor, atypical EPEC O55:H7. We found that the N and C termini of EspZ, which contains two transmembrane domains, face the cytosolic leaflet of the plasma membrane at the site of bacterial attachment, while the extracellular loop of EspZ is responsible for its strain-specific activity. These results show that EPEC and EHEC acquired a sophisticated mechanism to regulate the effector translocation.
IMPORTANCE: Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are important diarrheal pathogens responsible for significant morbidity and mortality in developing countries and the developed world, respectively. The virulence strategy of EPEC and EHEC revolves around a conserved type III secretion system (T3SS), which translocates bacterial proteins known as effectors directly into host cells. Previous studies have shown that when cells are infected in two waves with EPEC, the first wave inhibits effector translocation by the second wave in a T3SS-dependent manner, although the factor involved was not known. Importantly, we identified EspZ as the effector responsible for blocking protein translocation following a secondary EPEC infection. Interestingly, we found that while EspZ of EHEC can block protein translocation from both EPEC and EHEC strains, EPEC EspZ cannot block translocation from EHEC. These studies show that EPEC and EHEC employ a novel infection strategy to regulate T3SS translocation.
Resumo:
Typical enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) employ either Nck, TccP/TccP2, or Nck and TccP/TccP2 pathways to activate the neuronal Wiskott-Aldrich syndrome protein (N-WASP) and to trigger actin polymerization in cultured cells. This phenotype is used as a marker for the pathogenic potential of EPEC and EHEC strains. In this paper we report that EPEC O125:H6, which represents a large category of strains, lacks the ability to utilize either Nck or TccP/TccP2 and hence triggers actin polymerization in vitro only inefficiently. However, we show that infection of human intestinal biopsies with EPEC O125:H6 results in formation of typical attaching and effacing lesions. Expression of TccP in EPEC O125:H6, which harbors an EHEC O157-like Tir, resulted in efficient actin polymerization in vitro and enhanced colonization of human intestinal in vitro organ cultures with detectable N-WASP and electron-dense material at the site of bacterial adhesion. These results show the existence of a natural category of EPEC that colonizes the gut mucosa using Nck- and TccP-independent mechanisms. Importantly, the results highlight yet again the fact that conclusions made on the basis of in vitro cell culture models cannot be extrapolated wholesale to infection of mucosal surfaces and that the ability to induce actin polymerization on cultured cells should not be used as a definitive marker for EPEC and EHEC virulence.
Resumo:
During early vertebrate development, the correct establishment of the body axes is critical. The anterior pole of the mouse embryo is established when Distal Visceral Endoderm (DVE) cells migrate to form the Anterior Visceral Endoderm (AVE). Symmetrical expression of Lefty1, Cer1 and Dkk1 determines the direction of DVE migration and the future anterior side. In addition to the establishment of the Anterior-Posterior axis, the AVE has also been implicated in anterior neural specification. To better understand the role of the AVE in these processes, we have performed a differential screening using Affymetrix GeneChip technology with AVE cells isolated from cer1P-EGFP transgenic mouse embryos. We found 175 genes which were upregulated in the AVE and 36 genes in the Proximal-posterior sample. Using DAVID software, we characterized the AVE cell population regarding cellular component, molecular function and biological processes. Among the genes that were found to be upregulated in the AVE, several novel genes were identified. Four of these transcripts displaying high-fold change in the AVE were further characterized by in situ hybridization in early stages of development in order to validate the screening. From those four selected genes, one, denominated Adtk1, was chosen to be functionally characterized by targeted inactivation in ES cells. Adtk1 encodes for a serine/threonine kinase. Adtk1 null mutants are smaller and present short limbs due to decreased mineralization, suggesting a potential role in chondrogenesis during limb development. Taken together, these data point to the importance of reporting novel genes present in the AVE.
Resumo:
Glutamine synthetase (GS) is a vital enzyme for the assimilation of ammonia into amino acids in higher plants. In legumes, GS plays a crucial role in the assimilation of the ammonium released by nitrogen-fixing bacteria in root nodules, constituting an important metabolic knob controlling the nitrogen (N) assimilatory pathways. To identify new regulators of nodule metabolism, we profiled the transcriptome of Medicago truncatula nodules impaired in N assimilation by specifically inhibiting GS activity using phosphinothricin (PPT). Global transcript expression of nodules collected before and after PPT addition (4, 8, and 24 h) was assessed using Affymetrix M. truncatula GeneChip arrays. Hundreds of genes were regulated at the three time points, illustrating the dramatic alterations in cell metabolism that are imposed on the nodules upon GS inhibition. The data indicate that GS inhibition triggers a fast plant defense response, induces premature nodule senescence, and promotes loss of root nodule identity. Consecutive metabolic changes were identified at the three time points analyzed. The results point to a fast repression of asparagine synthesis and of the glycolytic pathway and to the synthesis of glutamate via reactions alternative to the GS/GOGAT cycle. Several genes potentially involved in the molecular surveillance for internal organic N availability are identified and a number of transporters potentially important for nodule functioning are pinpointed. The data provided by this study contributes to the mapping of regulatory and metabolic networks involved in root nodule functioning and highlight candidate modulators for functional analysis.
Resumo:
The function of the extracytoplasmic AUXIN-BINDING-PROTEIN1 (ABP1) is largely enigmatic. We complemented a homozygous T-DNA insertion null mutant of ABP1 in Arabidopsis thaliana Wassilewskia with three mutated and one wild-type (wt) ABP1 cDNA, all tagged C-terminally with a strepII-FLAG tag upstream the KDEL signal. Based on in silico modelling, the abp1 mutants were predicted to have altered geometries of the auxin binding pocket and calculated auxin binding energies lower than the wt. Phenotypes linked to auxin transport were compromised in these three complemented abp1 mutants. Red light effects, such as elongation of hypocotyls in constant red (R) and far-red (FR) light, in white light supplemented by FR light simulating shade, and inhibition of gravitropism by R or FR, were all compromised in the complemented lines. Using auxin-or light-induced expression of marker genes, we showed that auxininduced expression was delayed already after 10 min, and light-induced expression within 60 min, even though TIR1/AFB or phyB are thought to act as receptors relevant for gene expression regulation. The expression of marker genes in seedlings responding to both auxin and shade showed that for both stimuli regulation of marker gene expression was altered after 10-20 min in the wild type and phyB mutant. The rapidity of expression responses provides a framework for the mechanics of functional interaction of ABP1 and phyB to trigger interwoven signalling pathways.
Resumo:
Transcription activator-like effectors (TALEs) are virulence factors, produced by the bacterial plant-pathogen Xanthomonas, that function as gene activators inside plant cells. Although the contribution of individual TALEs to infectivity has been shown, the specific roles of most TALEs, and the overall TALE diversity in Xanthomonas spp. is not known. TALEs possess a highly repetitive DNA-binding domain, which is notoriously difficult to sequence. Here, we describe an improved method for characterizing TALE genes by the use of PacBio sequencing. We present 'AnnoTALE', a suite of applications for the analysis and annotation of TALE genes from Xanthomonas genomes, and for grouping similar TALEs into classes. Based on these classes, we propose a unified nomenclature for Xanthomonas TALEs that reveals similarities pointing to related functionalities. This new classification enables us to compare related TALEs and to identify base substitutions responsible for the evolution of TALE specificities. © 2016, Nature Publishing Group. All rights reserved.
Resumo:
Lactococcus garvieae is an important fish and an opportunistic human pathogen. The genomic sequences of several L. garvieae strains have been recently published, opening the possibility of global studies on the biology of this pathogen. In this study, a whole genome DNA microarray of two strains of L. garvieae was designed and validated. This DNA microarray was used to investigate the effects of growth temperature (18°C and 37°C) on the transcriptome of two clinical strains of L. garvieae that were isolated from fish (Lg8831) and from a human case of septicemia (Lg21881). The transcriptome profiles evidenced a strain-specific response to temperature, which was more evident at 18°C. Among the most significant findings, Lg8831 was found to up-regulate at 18°C several genes encoding different cold-shock and cold-induced proteins involved in an efficient adaptive response of this strain to low-temperature conditions. Another relevant result was the description, for the first time, of respiratory metabolism in L. garvieae, whose gene expression regulation was temperature-dependent in Lg21881. This study provides new insights about how environmental factors such as temperature can affect L. garvieae gene expression. These data could improve our understanding of the regulatory networks and adaptive biology of this important pathogen.
Resumo:
Dear Editor, Phytohormones are essential regulators of plant development, but their role in the signaling processes between plants and fungi during arbuscular mycorrhizal (AM) establishment is far from being understood (Ludwig-Müller, 2010). AM colonization leads to extensive effects on host metabolism, as revealed by transcriptome studies of AM plants (Hogekamp et al., 2011). Some genes have been specified as an AM core set, since they are mycorrhizal-responsive, irrespective of the identity of the plant, of the fungus, and of the investigated organ. These data support the idea that, on colonization, plants activate a wide reprogramming of their major regulatory networks and argue that mobile factors of fungal or plant origin are involved in such generalized metabolic changes. In this context, hormones may be good candidates (Bonfante and Genre, 2010). However, the emerging picture of the interaction between phytohormones and AMs is very patchy, and information on gibberellin (GA) involvement is still more limited (García-Garrido et al., 2010). The role of GA during nodulation is instead known to control the nodulation signaling pathway (Ferguson et al., 2011).
Resumo:
Familial amyloidotic polyneuropathy (FAP) has a high prevalence in Portugal, and the most common form of hereditary amyloidosis is caused by an amyloidogenic variant of transthyretin (TTR) with a substitution of methionine for valine at position 30 (V30M). Until now, the available efficient therapy is liver transplantation, when performed in an early phase of the onset of the disease symptoms. However, transplanted FAP patients have a significantly higher incidence of early hepatic artery thrombosis compared with non-FAP transplanted patients. Because FAP was described as an independent risk factor for early hepatic artery thrombosis, more studies to understand the underlying mechanisms involved in this outcome are of the utmost importance. Knowing that the liver is the major site for TTR production, we investigated the biological effects of TTR proteins in the vasculature and on angiogenesis. In this study, we identified genes differentially expressed in endothelial cells exposed to the WT or V30M tetramer. We found that endothelial cells may acquire different molecular identities when exposed to these proteins, and consequently TTR could regulate angiogenesis. Moreover, we show that V30M decreases endothelial survival by inducing apoptosis, and it inhibits migration. These findings provide new knowledge that may have critical implications in the prevention of early hepatic artery thrombosis in FAP patients after liver transplantation.