952 resultados para Excitatory Synapses


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goals of this study are to determine relationships between synaptogenesis and morphogenesis within the mushroom body calyx of the honeybee Apis mellifera and to find out how the microglomerular structure characteristic for the mature calyx is established during metamorphosis. We show that synaptogenesis in the mushroom body calycal neuropile starts in early metamorphosis (stages P1-P3), before the microglomerular structure of the neuropile is established. The initial step of synaptogenesis is characterized by the rare occurrence of distinct synaptic contacts. A massive synaptogenesis starts at stage P5, which coincides with the formation of microglomeruli, structural units of the calyx that are composed of centrally located presynaptic boutons surrounded by spiny postsynaptic endings. Microglomeruli are assembled either via accumulation of fine postsynaptic processes around preexisting presynaptic boutons or via ingrowth of thin neurites of presynaptic neurons into premicroglomeruli, tightly packed groups of spiny endings. During late pupal stages (P8-P9), addition of new synapses and microglomeruli is likely to continue. Most of the synaptic appositions formed there are made by boutons (putative extrinsic mushroom body neurons) into small postsynaptic profiles that do not exhibit presynaptic specializations (putative intrinsic mushroom body neurons). Synapses between presynaptic boutons characteristic of the adult calyx first appear at stage P8 but remain rare toward the end of metamorphosis. Our observations are consistent with the hypothesis that most of the synapses established during metamorphosis provide the structural basis for afferent information flow to calyces, whereas maturation of local synaptic circuitry is likely to occur after adult emergence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Little is known about the nature of the calcium channels controlling neurotransmitter release from preganglionic parasympathetic nerve fibres. In the present study, the effects of selective calcium channel antagonists and amiloride were investigated on ganglionic neurotransmission. Conventional intracellular recording and focal extracellular recording techniques were used in rat submandibular and pelvic ganglia, respectively. Excitatory postsynaptic potentials and excitatory postsynaptic currents preceded by nerve terminal impulses were recorded as a measure of acetylcholine release from parasympathetic and sympathetic preganglionic fibres following nerve stimulation. The calcium channel antagonists omega-conotoxin GVIA (N type), nifedipine and nimodipine (L type), omega-conotoxin MVIIC and omega-agatoxin IVA (P/Q type), and Ni2+ (R type) had no functional inhibitory effects on synaptic transmission in both submandibular and pelvic ganglia. The potassium-sparing diuretic, amiloride, and its analogue, dimethyl amiloride, produced a reversible and concentration-dependent inhibition of excitatory postsynaptic potential amplitude in the rat submandibular ganglion. The amplitude and frequency of spontaneous excitatory postsynaptic potentials and the sensitivity of the postsynaptic membrane to acetylcholine were unaffected by amiloride. In the rat pelvic ganglion, amiloride produced a concentration-dependent inhibition of excitatory postsynaptic currents without causing any detectable effects on the amplitude or configuration of the nerve terminal impulse. These results indicate that neurotransmitter release from preganglionic parasympathetic and sympathetic nerve terminals is resistant to inhibition by specific calcium channel antagonists of N-, L-, P/Q- and R-type calcium channels. Amiloride acts presynaptically to inhibit evoked transmitter release, but does not prevent action potential propagation in the nerve terminals, suggesting that amiloride may block the pharmacologically distinct calcium channel type(s) on rat preganglionic nerve terminals. (C) 1999 IBRO. Published by Elsevier Science Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inherent neurotoxic potential ofthe endogenous excitatory amino acid glutamate, may be causally related to the pathogenesis ofAD neurodegeneration disorders. Neuronal excitotoxicity is conceivably mediated by the N-methyl-D-aspartate-(NMDA)-Ca2+- ionotropic receptor. NMDA receptors exist as multimeric complexes comprising proteins from two families – NR1 and NR2(A-D). The polyamines, spermine and spermidine bind to, and modulate NMDA receptor efficacy via interaction with exon 5, an alternatively-spliced, 21 amino acid, N-terminal cassette. AD associated cognitive impairment may therefore occur via subunitspecific NMDA receptor dysfunction effecting regional selectivity of neuronal degradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the clinical setting, chronic administration of high doses of systemic morphine may result in neuro-excitatory behaviours such as myoclonus and allodynia in some patients. Additionally, high doses of m-opioid agonists such as morphine administered chronically by the intrathecal route in both rats and humans, as well as DAMGO in rats, have been reported to produce neuro-excitatory behaviours. However, more recently, it has begun to be appreciated that even at normal analgesic doses, opioids such as morphine are capable not only of activating pain inhibitory systems (analgesia/antinociception), but they also activate pain facilitatory systems such that post-opioid allodynia/hyperalgesia may be evident after cessation of opioid treatment. Whilst it is well documented that opioid receptors mediate the inhibitory effects of opioid analgesics, the excitatory and pro-nociceptive effects of opioids appear to involve indirect activation of N-methyl-D-aspartate (NMDA) receptors, such that the extent of pain relief produced may be the net effect of these two opposing actions. Apart from the NMDA-nitric oxide (NO) pro-nociceptive signaling cascade, considerable evidence also implicates dynorphin A as well as the endogenous anti-opioid peptides cholecystokinin (CCK), neuropeptide FF (NPFF) and orphanin FQ/nociceptin, in mediating opioid-induced neuro-excitation and abnormal pain behaviours. Apart from the neuro-excitatory effects that may be produced by the parent opioid, systemic administration of some opioid analgesics such as morphine and hydromorphone in rats and humans results in their rapid conversion to 3-glucuronide metabolites that also contribute significantly to the neuro-excitatory and abnormal pain behaviours produced

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Boolean models of genetic regulatory networks (GRNs) have been shown to exhibit many of the characteristic dynamics of real GRNs, with gene expression patterns settling to point attractors or limit cycles, or displaying chaotic behaviour, depending upon the connectivity of the network and the relative proportions of excitatory and inhibitory interactions. This range of behaviours is only apparent, however, when the nodes of the GRN are updated synchronously, a biologically implausible state of affairs. In this paper we demonstrate that evolution can produce GRNs with interesting dynamics under an asynchronous update scheme. We use an Artificial Genome to generate networks which exhibit limit cycle dynamics when updated synchronously, but collapse to a point attractor when updated asynchronously. Using a hill climbing algorithm the networks are then evolved using a fitness function which rewards patterns of gene expression which revisit as many previously seen states as possible. The final networks exhibit “fuzzy limit cycle” dynamics when updated asynchronously.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic alcohol abuse causes neurotoxicity and the development of tolerance and dependence. At the molecular level, however, knowledge about mechanisms underlying alcoholism remains limited. In this study we examined the superior frontal cortex, one of the most vulnerable brain regions, of alcoholics and of age- and gender-matched control subjects by means of antibody microarrays and Western blot analyses, and identified an up-regulation of beta-catenin level in the superior frontal cortex of alcoholics. Beta-catenin is the orthologue of the Drosophila armadillo segment polarity gene and a down stream component of the Wnt and Akt signaling pathway. Beta-catenin was identified as a cell adhesion molecule of the cadherin family which binds to the actin cytoskeleton. Genetic and biochemical analyses also found that beta-catenin can be translocated from the cytoplasm to the nucleus and acts as a transcription factor. In addition, electron microscopy performed on rat brain tissue sections has localized the beta-catenin and cadherin complexes to the synapses where they border the active zone. Because of the multi-functional role of beta-catenin in the nervous system, this study provides the premise for further investigation of mechanisms underlying the up-regulation of beta-catenin in alcoholism, which may have considerable pathogenic and therapeutic relevance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regional atrophy caused by neuronal loss is a characteristic of Alzheimer Disease (AD). Excitatory amino acid transporter-2 (EAAT2) is the major carrier responsible for clearing glutamate from the synaptic cleft in mammalian CNS. A localized attenuation of glutamate transport via reduced expression of functional forms of EAAT2 might contribute to regional excitotoxicity. The EAAT2 gene spans over 100 kb and encodes a 12-kb message. Several groups have identified alternative splice variants of EAAT2 in human brain tissue. These variants can affect transport by altering wild-type EAAT2 protein expression, localization, or transport efficiency. Alternative EAAT2 mRNA transcripts reportedly elicit a dominant-negative effect on glutamate uptake in cell culture. A 50% reduction in the expression in AD cortex of the truncated EAAT2 C-terminal isoform, EAAT2b, has been reported. We obtained cerebral cortex tissue, under informed written consent from the next of kin, from pathologically confirmed control, AD, and non-AD dementia cases. We aimed to determine the distribution and expression patterns of EAAT2 subtypes in susceptible and spared brain regions. We detected five alternate transcripts of EAAT2, two of which had not previously been reported. The relative contributions of novel variants, wild-type EAAT2, and previously discovered splice variants was investigated using Real-time PCR in AD, non-AD dementia, and age-matched control cortex. Our aim is to survey the relationship between these expression patterns and those of markers such as tau, GFAP, and b-amyloid, and to assess the correlation between variant-transporter expression and the level of cell loss.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inherent neurotoxic potential ofthe endogenous excitatory amino acid glutamate, may be causally related to the pathogenesis ofAD neurodegeneration disorders. Neuronal excitotoxicity is conceivably mediated by the N-methyl-D-aspartate-(NMDA)-Ca2+- ionotropic receptor. NMDA receptors exist as multimeric complexes comprising proteins from two families – NR1 and NR2(A-D). The polyamines, spermine and spermidine bind to, and modulate NMDA receptor efficacy via interaction with exon 5, an alternatively-spliced, 21 amino acid, N-terminal cassette. ADassociated cognitive impairment may therefore occur via subunitspecific NMDA receptor dysfunction effecting regional selectivity ofneuronal degradation. Total RNA was prepared from pathologically spared and susceptible regions from AD cases and matched controls. Quantitation was performed using standard curve methodology in which a known amount ofa synthetic ribonucleic acid competitor deletion construct was co-amplified against total RNA. Expression profile analysis oftwo NR1 mRNA subsets has revealed significant differences in NR11XX mRNA levels in cingulate gyrus, P.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last ten years our understanding of early spatial vision has improved enormously. The long-standing model of probability summation amongst multiple independent mechanisms with static output nonlinearities responsible for masking is obsolete. It has been replaced by a much more complex network of additive, suppressive, and facilitatory interactions and nonlinearities across eyes, area, spatial frequency, and orientation that extend well beyond the classical recep-tive field (CRF). A review of a substantial body of psychophysical work performed by ourselves (20 papers), and others, leads us to the following tentative account of the processing path for signal contrast. The first suppression stage is monocular, isotropic, non-adaptable, accelerates with RMS contrast, most potent for low spatial and high temporal frequencies, and extends slightly beyond the CRF. Second and third stages of suppression are difficult to disentangle but are possibly pre- and post-binocular summation, and involve components that are scale invariant, isotropic, anisotropic, chromatic, achromatic, adaptable, interocular, substantially larger than the CRF, and saturated by contrast. The monocular excitatory pathways begin with half-wave rectification, followed by a preliminary stage of half-binocular summation, a square-law transducer, full binocular summation, pooling over phase, cross-mechanism facilitatory interactions, additive noise, linear summation over area, and a slightly uncertain decision-maker. The purpose of each of these interactions is far from clear, but the system benefits from area and binocular summation of weak contrast signals as well as area and ocularity invariances above threshold (a herd of zebras doesn't change its contrast when it increases in number or when you close one eye). One of many remaining challenges is to determine the stage or stages of spatial tuning in the excitatory pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2002, we published a paper [Brock, J., Brown, C., Boucher, J., Rippon, G., 2002. The temporal binding deficit hypothesis of autism. Development and Psychopathology 142, 209-224] highlighting the parallels between the psychological model of 'central coherence' in information processing [Frith, U., 1989. Autism: Explaining the Enigma. Blackwell, Oxford] and the neuroscience model of neural integration or 'temporal binding'. We proposed that autism is associated with abnormalities of information integration that is caused by a reduction in the connectivity between specialised local neural networks in the brain and possible overconnectivity within the isolated individual neural assemblies. The current paper updates this model, providing a summary of theoretical and empirical advances in research implicating disordered connectivity in autism. This is in the context of changes in the approach to the core psychological deficits in autism, of greater emphasis on 'interactive specialisation' and the resultant stress on early and/or low-level deficits and their cascading effects on the developing brain [Johnson, M.H., Halit, H., Grice, S.J., Karmiloff-Smith, A., 2002. Neuroimaging of typical and atypical development: a perspective from multiple levels of analysis. Development and Psychopathology 14, 521-536].We also highlight recent developments in the measurement and modelling of connectivity, particularly in the emerging ability to track the temporal dynamics of the brain using electroencephalography (EEG) and magnetoencephalography (MEG) and to investigate the signal characteristics of this activity. This advance could be particularly pertinent in testing an emerging model of effective connectivity based on the balance between excitatory and inhibitory cortical activity [Rubenstein, J.L., Merzenich M.M., 2003. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes, Brain and Behavior 2, 255-267; Brown, C., Gruber, T., Rippon, G., Brock, J., Boucher, J., 2005. Gamma abnormalities during perception of illusory figures in autism. Cortex 41, 364-376]. Finally, we note that the consequence of this convergence of research developments not only enables a greater understanding of autism but also has implications for prevention and remediation. © 2006.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels are expressed postsynaptically in the rodent globus pallidus (GP), where they play several important roles in controlling GP neuronal activity. To further elucidate the role of HCN channels in the GP, immunocytochemical and electrophysiological approaches were used to test the hypothesis that HCN channels are also expressed presynaptically on the local axon collaterals of GP neurons. At the electron microscopic level, immunoperoxidase labelling for HCN1 and HCN2 was localized in GP somata and dendritic processes, myelinated and unmyelinated axons, and axon terminals. One population of labelled terminals formed symmetric synapses with somata and proximal dendrites and were immunoreactive for parvalbumin, consistent with the axon collaterals of GABAergic GP projection neurons. In addition, labelling for HCN2 and, to a lesser degree, HCN1 was observed in axon terminals that formed asymmetric synapses and were immunoreactive for the vesicular glutamate transporter 2. Immunogold labelling demonstrated that HCN1 and HCN2 were located predominantly at extrasynaptic sites along the plasma membrane of both types of terminal. To determine the function of presynaptic HCN channels in the GP, we performed whole-cell recordings from GP neurons in vitro. Bath application of the HCN channel blocker ZD7288 resulted in an increase in the frequency of mIPSCs but had no effect on their amplitude, implying that HCN channels tonically regulate the release of GABA. Their presence, and predicted role in modulating transmitter release, represents a hitherto unidentified mechanism whereby HCN channels influence the activity of GP neurons. © The Authors (2007).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Development of the cerebral cortex is influenced by sensory experience during distinct phases of postnatal development known as critical periods. Disruption of experience during a critical period produces neurons that lack specificity for particular stimulus features, such as location in the somatosensory system. Synaptic plasticity is the agent by which sensory experience affects cortical development. Here, we describe, in mice, a developmental critical period that affects plasticity itself. Transient neonatal disruption of signaling via the C-terminal domain of "disrupted in schizophrenia 1" (DISC1)-a molecule implicated in psychiatric disorders-resulted in a lack of long-term potentiation (LTP) (persistent strengthening of synapses) and experience-dependent potentiation in adulthood. Long-term depression (LTD) (selective weakening of specific sets of synapses) and reversal of LTD were present, although impaired, in adolescence and absent in adulthood. These changes may form the basis for the cognitive deficits associated with mutations in DISC1 and the delayed onset of a range of psychiatric symptoms in late adolescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent work has revealed multiple pathways for cross-orientation suppression in cat and human vision. In particular, ipsiocular and interocular pathways appear to assert their influence before binocular summation in human but have different (1) spatial tuning, (2) temporal dependencies, and (3) adaptation after-effects. Here we use mask components that fall outside the excitatory passband of the detecting mechanism to investigate the rules for pooling multiple mask components within these pathways. We measured psychophysical contrast masking functions for vertical 1 cycle/deg sine-wave gratings in the presence of left or right oblique (645 deg) 3 cycles/deg mask gratings with contrast C%, or a plaid made from their sum, where each component (i) had contrast 0.5Ci%. Masks and targets were presented to two eyes (binocular), one eye (monoptic), or different eyes (dichoptic). Binocular-masking functions superimposed when plotted against C, but in the monoptic and dichoptic conditions, the grating produced slightly more suppression than the plaid when Ci $ 16%. We tested contrast gain control models involving two types of contrast combination on the denominator: (1) spatial pooling of the mask after a local nonlinearity (to calculate either root mean square contrast or energy) and (2) "linear suppression" (Holmes & Meese, 2004, Journal of Vision 4, 1080–1089), involving the linear sum of the mask component contrasts. Monoptic and dichoptic masking were typically better fit by the spatial pooling models, but binocular masking was not: it demanded strict linear summation of the Michelson contrast across mask orientation. Another scheme, in which suppressive pooling followed compressive contrast responses to the mask components (e.g., oriented cortical cells), was ruled out by all of our data. We conclude that the different processes that underlie monoptic and dichoptic masking use the same type of contrast pooling within their respective suppressive fields, but the effects do not sum to predict the binocular case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At detection threshold, sensitivity improves as the area of a test grating increases, but not when the test is placed on a pedestal and the task becomes contrast discrimination (G. E. Legge, & J. M. Foley, 1980). This study asks whether the abolition of area summation is specific to the situation where mask and test stimuli have the same spatial frequency and orientation ("within-channel" masking) or is more general, also occurring when mask and test stimuli are very different ("cross-channel" masking). Threshold versus contrast masking functions were measured where the test and mask were either both small (SS), both large (LL), or small and large, respectively (SL). For within-channel masking, facilitation and area summation were found at low mask contrasts, but the results for SS and LL converged at intermediate contrasts and above, replicating Legge and Foley (1980). For all three observers, less facilitation was found for SL than for SS. For cross-channel masking, area summation occurred across the entire masking function and results for SS and SL were identical. The results for the entire data set were well fit by an extended version of a contrast masking model (J. M. Foley, 1994) in which the weights of excitatory and suppressive surround terms were free parameters. I conclude that (i) there is no empirical abolition of area summation for cross-channel masking, (ii) within-channel area summation can be abolished empirically without being disabled in the model, (iii) observers are able to restrict the area of spatial integration, but not suppression, (iv) extending a cross-channel mask to the surround has no effect on contrast detection, and (v) there is a formal similarity between area summation and contrast adaptation. © 2004 ARVO.