985 resultados para Evolution equations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal stability of nanocrystalline clusters, the phase evolution, and their effects on magnetic Propertieswere studied for as-cast Nd60Al10Fe20Co10 alloy using differential scanning calorimetry curves, x-ray diffraction patterns, scanning electron microscopy, and high-resolution transition electron microscopy. Thermomagnetic curves and hysteresis loops of the bulk metallic glass were measured during the annealing process. The high thermostability of the hardmagnetic properties of the samples observed is attributed to the stability of the nanocrystalline clusters upon annealing, while the slight enhancement in the magnetization is due to the precipitation of some Nd-rich metastable phases. The mechanism of thermostability of the nanocrystalline clusters and the formation of the metastable phases are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper performed a numerical simulation on temperature field evolution for the surface layer of a metallic alloy subjected to pulsed Nd:YAG laser treatment. The enthalpy method was adopted to solve the moving boundary problem, I.e. Stefan problem. Computational results were obtained to show the temperature field evolution. Effects of latent heat and mushy zone width on the temperature field were investigated. The results also show very high values of temperature gradient and cooling rate, which are typical characteristics during the solidification process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By the semi-inverse method proposed by He, a Lagrangian is established for the large deflection problem of thin circular plate. Ritz method is used to obtain an approximate analytical solution of the problem. First order approximate solution is obtained, which is similar to those in open literature. By Mathematica a more accurate solution can be deduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface rapid solidification microstructures of AISI 321 austenitic stainless steel and 2024 aluminum alloy have been investigated by electron beam remelting process and optical microscopy observation. It is indicated that the morphologies of the melted layer of both stainless steel and aluminum alloy change dramatically compared to the original materials. Also, the microstructures were greatly refined after the electron beam irradiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process of damage evolution concerns various scales, from micro- to macroscopic. How to characterize the trans-scale nature of the process is on the challenging frontiers of solid mechanics. In this paper, a closed trans-scale formulation of damage evolution based on statistical microdamage mechanics is presented. As a case study, the damage evolution in spallation is analyzed with the formulation. Scaling of the formulation reveals that the following dimensionless numbers: reduced Mach number M, damage number S, stress wave Fourier number P, intrinsic Deborah number D*, and the imposed Deborah number De*, govern the whole process of deformation and damage evolution. The evaluation of P and the estimation of temperature increase show that the energy equation can be ignored as the first approximation in the case of spallation. Hence, apart from the two conventional macroscopic parameters: the reduced Mach number M and damage number S, the damage evolution in spallation is mainly governed by two microdamage-relevant parameters: the Deborah numbers D* and De*. Higher nucleation and growth rates of microdamage accelerate damage evolution, and result in higher damage in the target plate. In addition, the mere variation in nucleation rate does not change the spatial distribution of damage or form localized rupture, while the increase of microdamage growth rate localizes the damage distribution in the target plate, which can be characterized by the imposed Deborah number De*.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two-dimensional cellular detonation propagating in a channel with area-changing cross section was numerically simulated with the dispersion-controlled dissipative scheme and a detailed chemical reaction model. Effects of the flow expansion and compression on the cellular detonation cell were investigated to illustrate the mechanism of the transverse wave development and the cellular detonation cell evolution. By examining gas composition variations behind the leading shock, the chemical reaction rate, the reaction zone length, and thermodynamic parameters, two kinds of the abnormal detonation waves were identified. To explore their development mechanism, chemical reactions, reflected shocks and rarefaction waves were discussed, which interact with each other and affect the cellular detonation in different ways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Problems involving coupled multiple space and time scales offer a real challenge for conventional frameworks of either particle or continuum mechanics. In this paper, four cases studies (shear band formation in bulk metallic glasses, spallation resulting from stress wave, interaction between a probe tip and sample, the simulation of nanoindentation with molecular statistical thermodynamics) are provided to illustrate the three levels of trans-scale problems (problems due to various physical mechanisms at macro-level, problems due to micro-structural evolution at macro/micro-level, problems due to the coupling of atoms/molecules and a finite size body at micro/nano-level) and their formulations. Accordingly, non-equilibrium statistical mechanics, coupled trans-scale equations and simultaneous solutions, and trans-scale algorithms based on atomic/molecular interaction are suggested as the three possible modes of trans-scale mechanics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations made by the authors and collaborators into the microstructural aspects of adiabatic shear localization are critically reviewed. The materials analyzed are low-carbon steels, 304 stainless steel, monocrystalline Fe-Ni-Cr, Ti and its alloys, Al-Li alloys, Zircaloy, copper, and Al/SiCp composites. The principal findings are the following: (a) there is a strain-rate-dependent critical strain for the development of shear bands; (b) deformed bands and white-etching bands correspond to different stages of deformation; (c) different slip activities occur in different stages of band development; (d) grain refinement and amorphization occur in shear bands; (e) loss of stress-carrying capability is more closely associated with microdefects rather than with localization of strain; (f) both crystalline rotation and slip play important roles; and (g) band development and band structures are material dependent. Additionally, avenues for new research directions are suggested.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic technique is used to detect the velocity change of stress wave propagated in the cement mortar immersed in the solution of sodium sulfate for 425 days. Also the density change of specimens at different erosion time is measured. By curve fitting, the effect of solutions' concentration and water/cement ratio on the damage evolution is analyzed. The SEM observation on the growth of delayed ettringite is also performed. It shows that the damage evolution of specimens attacked by sulphate solution is dominantly induced by the nucleation and growth of delayed ettringite, and the average size of microvoids in cement mortar affects the damage evolution significantly. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular cell pattern evolution of cylindrically-diverging detonations is numerically simulated successfully by solving two-dimensional Euler equations implemented with an improved two-step chemical kinetic model. From the simulation, three cell bifurcation modes are observed during the evolution and referred to as concave front focusing, kinked and wrinkled wave front instability, and self-merging of cellular cells. Numerical research demonstrates that the wave front expansion resulted from detonation front diverging plays a major role in the cellular cell bifurcation, which can disturb the nonlinearly self-sustained mechanism of detonations and finally lead to cell bifurcations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel finite volume method has been presented to solve the shallow water equations. In addition to the volume-integrated average (VIA) for each mesh cell, the surface-integrated average (SIA) is also treated as the model variable and is independently predicted. The numerical reconstruction is conducted based on both the VIA and the SIA. Different approaches are used to update VIA and SIA separately. The SIA is updated by a semi-Lagrangian scheme in terms of the Riemann invariants of the shallow water equations, while the VIA is computed by a flux-based finite volume formulation and is thus exactly conserved. Numerical oscillation can be effectively avoided through the use of a non-oscillatory interpolation function. The numerical formulations for both SIA and VIA moments maintain exactly the balance between the fluxes and the source terms. 1D and 2D numerical formulations are validated with numerical experiments. Copyright (c) 2007 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introducción: This article provides a historical interpretation of Catholic social economy (also called Social Catholicism) in an attempt to give a Christian form to capitalism. The aim of this writing is to reflect on the evolution of Catholic economic thought and to offer some foreseeable development in light of the experience that characterized the early stages of this movement. By Catholic social economy, the author does not mean the social doctrine of the church, but the whole set of scientific work of Catholic scholars, with their different orientations and acceptance by the official documents of the holy soil. Roman Catholicism is the only religion that has produced wide and continuous scientific research about political economy. This should not be considered an anomaly, because the positivistic attitude of modern economics tends to crowd out the classic unitary view of man and of a good life that characterizes Catholic anthropology. As a consequence, it can be considered an attempt to address scientific research in a way compatible to the Catholic view of the “social nature of man”, and not an attempt to resist or to contrast the role of science. The fundamental concepts of this stream of research have been the idea of natural law intended as a moral order (vs. the equilibrium of conflicting strategies), the social nature of man (vs. individualism and individual autonomy) and the role that charity and justice assume for individual behaviour inspired by the common good (vs. freedom and laissez faire)...