936 resultados para Estrogen Receptor beta
Resumo:
BACKGROUND: Severe brain trauma leads to an activation of the immune system. To this date, neither the exact perturbation of the specific immune reaction induced by the traumatic brain injury (TBI), nor the interactions leading to the infiltration of peripheral immune cells into the brain are fully understood. PATIENTS AND METHODS: Serum was collected from 17 patients with TBI and a long bone fracture, 24 patients with an isolated long bone fracture and from healthy individuals. The effect of the serum on normal human monocytes and T-lymphocytes was tested in vitro by assessing proliferation and expression of surface markers, chemokine receptors and cytokines. RESULTS: Serum collected from patients with a TBI and a long bone fracture increased the expression of the chemokine receptor CCR4 in monocytes when compared to patients with an isolated long bone fracture. Extending this comparison to T-lymphocytes, the serum from TBI patients induced lower proliferation rates and decreased expression of the pro-inflammatory cytokine TNF-alpha, while simultaneously increasing the secretion of immune-modulatory cytokines (IL-4, IL-10 and TGF-beta) (p<0.05). CONCLUSION: Patients with a TBI release currently unknown soluble factors into the circulating blood that up regulate expression of chemokine receptor CCR4 in peripheral blood monocytes whilst concurrently inducing expression of immunosuppressive cytokines by activated T-lymphocytes.
Resumo:
Many membrane proteins, including the GABA(A) [GABA (gamma-aminobutyric acid) type A] receptors, are oligomers often built from different subunits. As an example, the major adult isoform of the GABA(A) receptor is a pentamer built from three different subunits. Theoretically, co-expression of three subunits may result in many different receptor pentamers. Subunit concatenation allows us to pre-define the relative arrangement of the subunits. This method may thus be used to study receptor architecture, but also the nature of binding sites. Indeed, it made possible the discovery of a novel benzodiazepine site. We use here subunit concatenation to study delta-subunit-containing GABA(A) receptors. We provide evidence for the formation of different functional subunit arrangements in recombinant alpha(1)beta(3)delta and alpha(6)beta(3)delta receptors. As with all valuable techniques, subunit concatenation has also some pitfalls. Most of these can be avoided by carefully titrating and minimizing the length of the linker sequences joining the two linked subunits and avoiding inclusion of the signal sequence of all but the N-terminal subunit of a multi-subunit construct. Maybe the most common error found in the literature is that low expression can be overcome by simply overloading the expression system with genetic information. As some concatenated constructs result by themselves in a low level of expression, this erroneous assembly leading to receptor function may be promoted by overloading the expression system and leads to wrong conclusions.
Resumo:
A high prevalence of gonad morphological variations has been observed in whitefish Coregonus lavaretus from Lake Thun (Switzerland). To clarify the role of endocrine disruption as a possible cause of the gonad alterations, whitefish were reared in a long-term laboratory experiment under exposure to 17 beta-estradiol (E2). Fish were fed from first-feeding until 3 yr of age at a daily rate of 0 (control), 0.5 or 50 microg E2 kg(-1) fish. E2 exposure resulted in a time- and concentration-dependent increase of prevalence and intensity of intersex gonads, i.e. gonads that macroscopically appeared as either testis or ovary but microscopically contained both male and female germ cells. Four types of intersex could be distinguished: Types 1 and 2 were composed of mainly male tissue, with Type 1 containing single oocytes and Type 2 displaying an ovary-like lamellar structure of the tissue. In Type 3, an increased percentage of the tissue was occupied by female germ cells, while in Type 4, the majority of the gonad tissue consisted of female germ cells. Chronic E2 exposure additionally resulted in a concentration-dependent shift of the sex ratio towards females, a reduced condition factor, retarded gonad growth together with delayed maturation of germ cells, and elevated levels of hepatic vitellogenin mRNA. However, Lake Thun-typical alterations of gonad morphology were not induced by chronic E2 exposure. The results provide evidence that estrogen-active compounds unlikely play a role in the etiology of gonad malformations in Lake Thun whitefish.
Resumo:
In the aquatic environment, fish are exposed to various stimuli at once and have developed different response mechanisms to deal with these multiple stimuli. The current study assessed the combined impacts of estrogens and bacterial infection on the physiological status of fish. Juvenile rainbow trout were exposed to two different concentrations of 17 beta-estradiol (E2) (2 or 20 mg/kg feed) and then infected with three concentrations of Yersinia ruckeri, a bacterial pathogen causing massive losses in wild and farmed salmonid populations. Organism-level endpoints to assess the impact of the single and combined treatments included hepatic vitellogenin transcript expression to evaluate the E2 exposure efficiency and survival rate of pathogen-challenged fish. The two E2 doses increased vitellogenin levels within the physiological range. Infection with Y. ruckeri caused mortality of trout, and this effect was significantly enhanced by a simultaneous exposure to high E2 dose. The hormone reduced survival at intermediate and high (10(4) and 10(6) colony forming units, cfu) bacterial concentrations, but not for a low one (10(2) cfu). Analysis of hepatic gene expression profiles by a salmonid 2 k cDNA microarray chip revealed complex regulations of pathways involved in immune responses, stress responses, and detoxicification pathways. E2 markedly reduced the expression of several genes implicated in xenobiotic metabolism. The results suggest that the interaction between pathogen and E2 interfered with the fish's capability of clearing toxic compounds. The findings of the current study add to our understanding of multiple exposure responses in fish.
Resumo:
PDGFR is an important target for novel anticancer therapeutics because it is overexpressed in a wide variety of malignancies. Recently, however, several anticancer drugs that inhibit PDGFR signaling have been associated with clinical heart failure. Understanding this effect of PDGFR inhibitors has been difficult because the role of PDGFR signaling in the heart remains largely unexplored. As described herein, we have found that PDGFR-beta expression and activation increase dramatically in the hearts of mice exposed to load-induced cardiac stress. In mice in which Pdgfrb was knocked out in the heart in development or in adulthood, exposure to load-induced stress resulted in cardiac dysfunction and heart failure. Mechanistically, we showed that cardiomyocyte PDGFR-beta signaling plays a vital role in stress-induced cardiac angiogenesis. Specifically, we demonstrated that cardiomyocyte PDGFR-beta was an essential upstream regulator of the stress-induced paracrine angiogenic capacity (the angiogenic potential) of cardiomyocytes. These results demonstrate that cardiomyocyte PDGFR-beta is a regulator of the compensatory cardiac response to pressure overload-induced stress. Furthermore, our findings may provide insights into the mechanism of cardiotoxicity due to anticancer PDGFR inhibitors.
Resumo:
BACKGROUND AND PURPOSE: Familial aggregation of intracranial aneurysms (IA) strongly suggests a genetic contribution to pathogenesis. However, genetic risk factors have yet to be defined. For families affected by aortic aneurysms, specific gene variants have been identified, many affecting the receptors to transforming growth factor-beta (TGF-beta). In recent work, we found that aortic and intracranial aneurysms may share a common genetic basis in some families. We hypothesized, therefore, that mutations in TGF-beta receptors might also play a role in IA pathogenesis. METHODS: To identify genetic variants in TGF-beta and its receptors, TGFB1, TGFBR1, TGFBR2, ACVR1, TGFBR3, and ENG were directly sequenced in 44 unrelated patients with familial IA. Novel variants were confirmed by restriction digestion analyses, and allele frequencies were analyzed in cases versus individuals without known intracranial disease. Similarly, allele frequencies of a subset of known SNPs in each gene were also analyzed for association with IA. RESULTS: No mutations were found in TGFB1, TGFBR1, TGFBR2, or ACVR1. Novel variants identified in ENG (p.A60E) and TGFBR3 (p.W112R) were not detected in at least 892 reference chromosomes. ENG p.A60E showed significant association with familial IA in case-control studies (P=0.0080). No association with IA could be found for any of the known polymorphisms tested. CONCLUSIONS: Mutations in TGF-beta receptor genes are not a major cause of IA. However, we identified rare variants in ENG and TGFBR3 that may be important for IA pathogenesis in a subset of families.
Resumo:
The dorsal noradrenergic bundle (DB) is a major ascending pathway which originates in the locus coeruleus of the brainstem and projects to the forebrain. The behavioral role of the DB remains unclear, despite a great deal of effort. Selective attention and anxiety are two areas which have been the focus of recent research. Some studies of the DB utilize the neurotoxin 6-hydroxydopamine (6-OHDA), since 6-OHDA injection into this pathway results in greater than 90 percent depletion of cortical and hippocampal norepinephrine (NE). Neophobia, the fear of novelty, has been reported to be either increased or decreased by 6-OHDA lesions of the DB, depending on conditions. The selective attention hypothesis would be supported by increased neophobia after 6-OHDA lesions, while the anxiety hypothesis would be supported by decreased neophobia. We have examined the effects of 6-OHDA DB lesions on neophobia under conditions in which the test environment and/or the test food were novel. We found that the lesion attenuates neophobia, defined as an increased preference for novel food, when both the environment and food were novel. The lesion had no effect on neophobia when only the environment or food was novel.^ We examined the effects of chronic intraventricular NE infusions on behavior in our neophobia test, in sham and 6-OHDA DB lesioned animals. We found that chronic NE infusions into lesioned animals significantly reversed the lesion-induced attenuation of neophobia. Sham/NE infused animals demonstrated a 40 percent greater preference for familiar food compared to sham/saline infused animals. These data suggest that infusions of NE have an effect opposite to lesion-induced attenuation of neophobia. Chronic infusions of the alpha adrenoceptor agonists had no consistent effects on neophobia. The beta adrenoceptor agonist, isoproterenol reversed the lesion-induced attenuation of neophobia but not to a statistically significant degree. Isoproterenol increased neophobia in sham animals. Forskolin, an adenylate cyclase activator, mimicked the effects of NE infusion by significantly reversing the lesion-induced attenuation of neophobia, while increasing neophobia in sham animals. These results suggest that increased release of NE during stress increases neophobia in part by stimulating beta adrenoceptors which activate adenylate cyclase. ^
Resumo:
There have been numerous reports over the past several years on the ability of vitamin A analogs (retinoids) to modulate cell proliferation, malignant transformation, morphogenesis, and differentiation in a wide variety of cell types and organisms. Two families of nuclear retinoid-inducible, trans-acting, transcription-enhancing receptors that bear strong DNA sequence homology to thyroid and steroid hormone receptors have recently been discovered. The retinoic acid receptors (RARs) and retinoid X receptors (RXRs) each have at least three types designated $\alpha,$ $\beta,$ and $\gamma,$ which are encoded by separate genes and expressed in a tissue and cell type-specific manner. We have been interested in the mechanism by which retinoids inhibit tumor cell proliferation and induce differentiation. As a model system we have employed several murine melanoma cell lines (S91-C2, K1735P, and B16-F1), which are sensitive to the growth-inhibitory and differentiation-inducing effects of RA, as well as a RA-resistant subclone of one of the cell lines (S91-C154), in order to study the role of the nuclear RARs in these effects. The initial phase of this project consisted of the characterization of the expression pattern of the three known RAR and RXR types in the murine melanoma cell lines in order to determine whether any differences exist which may elucidate a role for any of the receptors in RA-induced growth inhibition and differentiation. The novel finding was made that the RAR-$\beta$ gene is rapidly induced from undetectable levels by RA treatment at the mRNA and protein level, and that the induction of RAR-$\beta$ by other biologically active retinoids correlated with their ability to inhibit the growth of the highly RA-sensitive S91-C2 cell line. This suggests a role for RAR-$\beta$ in the growth inhibiting effect of retinoids. The second phase of this project involves the stable expression of RAR-$\beta$ in the S91-C2 cells and the RAR-$\beta$ receptor-null cell line, K1735P. These studies have indicated an inverse correlation between RAR-$\beta$ expression and proliferation rate. ^
Resumo:
The integrin receptor $\alpha 4\beta 1$ is a cell surface heterodimer involved in a variety of highly regulated cellular interactions. The purpose of this dissertation was to identify and characterize unique structural and functional properties of the $\alpha 4\beta 1$ molecule that may be important for adhesion regulation and signal transduction. To study these properties and to establish a consensus sequence for the $\alpha 4$ subunit, cDNA encoding $\alpha 4$ was cloned and sequenced. A comparison with previously described human $\alpha 4$ sequences identified several substitutions in the $5\prime$ and $3\prime$ untranslated regions, and a nonsynonymous G to A transition in the coding region, resulting in a glutamine substitution for arginine. Further analysis of this single nucleotide substitution indicated that two variants of the $\alpha 4$ subunit exist, and when compared with three ancestrally-related species, the new form cloned in our laboratory was found to be evolutionarily conserved.^ The expression of $\alpha 4$ cDNA in transfected K562 erythroleukemia cells, and subsequent studies using flow cytofluorometric, immunochemical, and ligand binding/blocking analyses, confirmed $\alpha 4\beta 1$ as a receptor for fibronectin (FN) and vascular cell adhesion molecule-1 (VCAM-1), and provided a practical means of identifying two novel monoclonal antibody (mAb) binding epitopes on the $\alpha 4\beta 1$ complex that may play important roles in the regulation of leukocyte adhesion.^ To investigate the association of $\alpha 4\beta 1$-mediated adhesion with signals involved in the spreading of lymphocytes on FN, a quantitative method of analysis was developed using video microscopy and digital imaging. The results showed that HPB-ALL $(\alpha 4\beta 1\sp{\rm hi},\ \alpha 5\beta 1\sp-)$ cells could adhere and actively spread on human plasma FN, but not on control substrate. Many cell types which express different levels of the $\alpha 4\beta 1$ and $\alpha 5\beta 1$ FN binding integrins were examined for their ability to function in these events. Using anti-$\alpha 4$ and anti-$\alpha 5$ mAbs, it was determined that cell adhesion to FN was influenced by both $\beta 1$ integrins, while cell spreading was found to be dependent on the $\alpha 4\beta 1$ complex. In addition, inhibitors of phospholipase A$\sb2$ (PLA$\sb2$), 5-lipoxygenases, and cyclooxygenases blocked HPB-ALL cell spreading, yet had no effect on cell adhesion to FN, and the impaired spreading induced by the PLA$\sb2$ inhibitor cibacron blue was restored by the addition of exogenous arachidonic acid (AA). These results suggest that the interaction of $\alpha 4\beta 1$ with FN, the activation of PLA$\sb2,$ and the subsequent release of AA, may be involved in lymphocyte spreading. ^
Resumo:
$\beta$1,4-Galactosyltransferase (GalTase) is unusual among the glycosyltransferases in that it is found in two subcellular compartments where it performs different functions. In the trans-Golgi complex, GalTase participates in oligosaccharide biosynthesis as do other glycosyltransferases. GalTase is also found on the cell surface, where it associates with the cytoskeleton and functions as a receptor for extracellular oligosaccharide ligands. Although we know much regarding GalTase function on the cell surface, little is known about the mechanisms underlying its transport to the plasma membrane. Cloning of the GalTase gene revealed that there are two GalTase proteins (i.e., long and short) with different size cytoplasmic tails. This raises the possibility that differences in the cytoplasmic domain of GalTase may influence its subcellular distribution. The object of this study was to examine this hypothesis directly through the use of molecular, immunological, and biochemical approaches.^ To examine whether the two GalTase proteins are targeted to different subcellular compartments, F9 embryonal carcinoma cells were transfected with either long or short GalTase cDNAs and intracellular and cell surface enzyme levels measured. Cell surface GalTase activity was enriched in cells overexpressing the long, but not the form of short GalTase. Furthermore, a dominant negative mutation in cell surface GalTase was created by transfecting cells with GalTase cDNAs encoding a truncated version of long GalTase devoid of the extracellular catalytic domain. Overexpressing the complete cytoplasmic and transmembrane domains of long GalTase led to a loss of GalTase-dependent cellular adhesion by specifically displacing surface GalTase from its cytoskeletal associations. In contrast, overexpressing the analogous truncated protein of short GalTase had no effect on cell adhesion. Finally, chloramphenicol acetyltransferase (CAT) reporter proteins were used to determine directly whether the cytoplasmic domains of long and short GalTase were responsible for differential subcellular distribution. The cytoplasmic and transmembrane domains of long GalTase led to CAT expression on the ceil surface and its association with the detergent-insoluble cytoskeleton; the analogous fusion protein containing short GalTase was restricted to the Golgi compartment. These results suggest that the cytoplasmic domain unique to long GalTase is responsible for targeting a portion of this protein to the cell surface and associating it with the cytoskeleton, enabling it to function as a cell adhesion molecule. ^
Resumo:
Using a "collision-coupling" model for $\beta \sb 2$-adrenergic receptor-mediated activation of adenylylcyclase in S49 lymphoma cells, the rate-limiting step of that activation was identified as the association of an "active-state", hormone-bound receptor (HR$\sp\*$) with a G$\sb{\rm s}$-adenylylcyclase moiety (G$\sb{\rm s}$C). It was subsequently hypothesized that the location of the rate-limiting step would not be shifted elsewhere in the activation scheme by receptor desensitization. The traditional focus of receptor desensitization studies has been on modifications of the receptor molecule itself. A "clear-cut" answer to the present hypothesis provides new information on modifications in the function of the receptor following desensitization.^ "Heterologous" desensitization was induced in wild type S49 cells with agents which increase intracellular cAMP without occupying $\beta\sb2$-adrenergic receptors; PGE$\sb1$, forskolin and dibutyryl cAMP. These treatments avoided overlapping effects on $\beta\sb2$-adrenergic receptors by the "homologous" mechanism, in which occupancy by hormone is causative. Although the steady-state activation rate was decreased following heterologous desensitization, that rate was still limited by the association between HR* and G$\sb{\rm s}$C. Thus "heterologous" desensitization acts at the equilibrium between HR and HR* (which is driven by hormone efficiency) such that HR* formation becomes less likely and the frequency of HR*G$\sb{\rm s}$C associations decreases.^ "Homologous" desensitization was induced by high (1-10$\mu$M) epinephrine concentrations in the S49 variant deficient in cAMP-dependent protein kinase, KIN$\sp-$. Use of KIN$\sp-$minimized overlapping effects by the "heterologous" mechanism, which is PKA-dependent. Following homologous desensitization, roughly 50% of the receptors in plasma membrane preparations no longer formed HR*G$\sb{\rm s}$C complexes; evidenced by a decrease in high-affinity hormone binding sites. The loss of HR*G$\sb{\rm s}$C formation did not appear related to the HR/HR* equilibrium. Increasing the efficiency of the assay agonist did nothing to "override" the effect. HR*G$\sb{\rm s}$C association was still the rate-limiting step among the remaining functional receptors. It was not distinguishable whether the remaining activity was "desensitized" due to adenylylcyclase having decreased access to receptors within plasma membrane fragments or due to an effect similar to "heterologous" desensitization. ^
{\it In vivo\/} induction of DNA changes in cervicovaginal epithelium by perinatal estrogen exposure
Resumo:
Epidemiological studies have associated estrogens with human neoplasm such as the endometrium, cervix, vagina, breast, and liver. Perinatal exposure to natural (17$\beta$-estradiol (17$\beta$-E$\sb2)\rbrack$ and synthetic (diethylstilbestrol (DES)) estrogens induces neoplastic changes in humans and rodents. Previous studies demonstrated that neonatal 17$\beta$-E$\sb2$ treatment increased the nuclear DNA content of mouse cervicovaginal epithelium that preceded histologically evident neoplasia. In order to determine whether this effect was specific to 17$\beta$-E$\sb2,$ associated with chromosomal changes, and relevant to the human, female BALB/c mice were treated neonatally with either 17$\alpha$-estradiol (17$\alpha$-E$\sb2)$ and 5$\beta$-dihydrotestosterone ($5\beta$-DHT), both inactive steroids in adult reproductive tissue, or 17$\beta$-E$\sb2.$ Ten-day-old mice received pellet implants of 17$\beta$-E$\sb2,$ 17$\alpha$-E$\sb2,$ $5\beta$-DHT, or cholesterol. Seventy-day-old cervicovaginal tracts were examined histologically and flow cytometrically. 17$\beta$-E$\sb2$-treated animals were evaluated by fluorescent in situ hybridization (FISH) using a probe specific for chromosome 1. Trisomy of chromosomes 1, 7, 11, and 17 was evaluated by FISH in cervicovaginal material from 19 DES-exposed and 19 control patients.^ $17\beta$-E$\sb2, 17\alpha$-E$\sb2$, and $5\beta$-DHT-induced dramatic developmental and histological changes in the cervicovaginal tract, including hypospadia, hyperplasia, and persistent cornification. The changes induced by 17$\alpha$-E$\sb2$ were equivalent to 17$\beta$-E$\sb2.$ Neonatal 17$\alpha$-E$\sb2$-induced adenosquamous cervicovaginal tumors at 24 months. 17$\alpha$-E$\sb2$ and $5\beta$-DHT significantly increased the nuclear DNA content over control animals, but at significantly lower levels than 17$\beta$-E$\sb2.$ DNA ploidy changes were highest (80%) in animals treated neonatally and secondarily with 17$\beta$-E$\sb2.$ Secondary 17$\alpha$-E$\sb2$ and $5\beta$-DHT administration, unlike 17$\beta$-E$\sb2,$ didn't significantly increase DNA content. Chromosome 1 trisomy incidence was 66% in neonatal 17$\beta$-E$\sb2$-treated animals. Trisomy was evident in 4 DES-exposed patients: one patient with trisomy of chromosomes 1, 7, and 11; one patient with chromosome 7 trisomy; and two patients with chromosome 1 trisomy. These data demonstrated the biological effects of 17$\alpha$-E$\sb2$ and $5\beta$-DHT were age-dependent, 17$\alpha$-E$\sb2$ was equivalent to 17$\beta$-E$\sb2$ and tumorigenic when administered neonatally, and histological changes were not steroid specific. Chromosomal changes were associated with increased nuclear DNA content and chromosomal changes may be an early event in the development of tumors in human DES-exposed tissues. ^
Resumo:
The insulin receptor transduces insulin's biological signal through the tyrosine kinase present in the receptor's B subunit. The activated insulin receptor kinase then phosphorylates a series of intracellular substrate including insulin receptor substrate 1 (IRS-1), which has been shown to be the pivotal substrate for insulin receptor signal transduction. The phosphorylated tyrosine residues in IRS-1 can bind and activate the downstream effectors, many of which are SH2 domain containing proteins such as phosphotidylinositol 3-kinase, growth factor binding protein 2, and SH2 phosphotyrosine phosphatase 2. Phosphorylated synthetic IRS-1 peptides with the corresponding sequences of the IRS-1 have been shown to associate and activate their respective SH2 domain containing proteins. Another important event happening during insulin binding with the insulin receptor is that the insulin receptor rapidly undergoes internalization. However, the insulin receptor signalling and the receptor endocytosis have been studied as two independent processes. The hypothesis of the present thesis is that the insulin receptor endocytosis is involved in insulin receptor signalling and signal termination. The results of the present investigation demonstrate that insulin receptors in the earliest stage of endocytosis contain significantly greater kinase activity towards IRS-1 peptides than the receptors localized at the plasma membrane, indicating that they are potentially more capable of transducing signals. On the other hand, insulin receptors in the middle and late stage of endocytosis lose their kinase activity, suggesting that insulin receptor kinase activity inactivation and signal termination might take place in the late phase of the insulin receptor internalization. In addition, this study also found that the increased insulin receptor kinase activity in the endosomes is related to the tyrosyl phosphorylation of the specific domains of the receptor's $\beta$ subunit. ^
Resumo:
Despite much attention, the function of oligosaccharide chains of glycoproteins remains largely unknown. Our understanding of oligosaccharide function in vivo has been limited to the use of reagents and targeted mutations that eliminate entire oligosaccharide chains. However, most, if not all biological functions for oligosaccharides have been attributed to specific terminal sequences on these oligosaccharides, yet there have been few studies to examine the consequences of modifying terminal oligosaccharide structures in vivo. To address this issue, mice were created bearing a targeted mutation in $\beta$1,4-galactosyltransferase, an enzyme responsible for elaboration of many of the proposed biologically-active carbohydrate epitopes. Most galactosyltransferase-null mice died within the first few weeks after birth and were characterized by stunted growth, thin skin, sparse hair, and dehydration. In addition, the adrenal cortices were poorly stratified and spermatogenesis was delayed. The few surviving adults had puffy skin (myxedema), difficulty delivering pups at birth (dystocia), and failed to lactate (agalactosis). All of these defects are consistant with endocrine insufficiency, which was confirmed by markedly decreased levels of serum thyroxine. The anterior pituitary gland appeared functionally delayed in newborn mutant mice, since the constituent cells were quiescent and nonsecretory, unlike that of control littermates. However, the anterior pituitary acquired a normal secretory phenotype during neonatal development, although it remained abnormally small and its glycoprotein hormones were devoid of $\beta$1,4-galactosyl residues. These results support in vitro studies suggesting that incomplete glycosylation of pituitary hormones leads to the creation of hormone antagonists that down regulate subsequent endocrine function producing polyglandular endocrine insufficiency. More surprisingly, the fact that some mice survive this neonatal period indicates the presence of a previously unrecognized compensatory pathway for glycoprotein hormone glycosylation and/or action.^ In addition to its well-studied biosynthetic function in the Golgi complex, a GalTase isoform is also expressed on the sperm surface where it functions as a gamete receptor during fertilization by binding to its oligosaccharide ligand on the egg coat glycoprotein, ZP3. Aggregation of GalTase by multivalent ZP3 oligosaccharides activates a G-protein cascade leading to the acrosome reaction. Although GalTase-null males are fertile, the mutant sperm bind less ZP3 than wild-type sperm, and are unable to undergo the acrosome reaction in response to either zona pellucida glycoproteins or to anti-GalTase anti-serum, as do wild-type sperm. However, mutant and wild-type sperm undergo the acrosome reaction normally in response to calcium ionophore which bypasses the requirement for ZP3 binding. Interestingly, the phenotype of the GalTase-null sperm is reciprocal to that of sperm that overexpress surface GalTAse and which bind more ZP3 leading to precocious acrosome reactions. These results confirm that GalTase functions as at least one of the sperm receptors for ZP3, and that GalTase participates in the ZP3-induced signal transduction pathway during zona pellucida-induced acrosome reactions. ^
Resumo:
The purpose of these studies was to investigate the role of interferon-beta (IFN-$\beta$) in angiogenesis. IFN-$\alpha/\beta$ have been implicated in inhibiting a number of steps in the angiogenic pathway. We examined the balance of angiogenesis-regulating molecules in several systems including human infantile hemangiomas, UV-B irradiated mice, and dorsal incisional wound healing in mice. In each system, epidermal hyperplasia and cutaneous angiogenesis were directly related to the expression of positive angiogenic factors (bFGF and VEGF) and inversely related to the expression of endogenous IFN-$\beta.$ The re-expression of IFN-$\beta$ correlated with tumor regression and/or resolution of wound healing. In contrast to control mice, UV-B-induced cutaneous angiogenesis and hyperplasia persisted in IFN-$\alpha/\beta$ receptor knock-out mice. In normal mice, endogenous IFN-$\beta$ was expressed by all differentiated epithelial cells exposed to environmental stimuli. The expression of endogenous IFN-$\beta$ was necessary but insufficient for complete differentiation of epidermal keratinocytes.^ The tumor organ microenvironment can regulate angiogenesis. Human bladder carcinoma cells growing in the bladder wall of nude mice express high levels of bFGF, VEGF, and MMP-9, have higher vascular densities, and produce metastases to lymph nodes and lungs, whereas the same cells growing subcutaneously express less bFGF, VEGF, and MMP-9, have lower vascular densities, and do not metastasize. IFN-$\alpha/\beta$ was found to inhibit bFGF and MMP-9 expression both in vitro and in vivo in human bladder carcinoma cells. Systemic therapy with human IFN-$\alpha$ of human bladder cancer cells growing orthotopically in nude mice, resulted in decreased vascularity, tumorigenicity, and metastasis as compared to saline treated mice. Human bladder cancer cells resistant to the antiproliferative effects of IFN were transfected with the human IFN-$\beta$ gene. Hu-IFN-$\beta$ transfected cells expressed significantly less bFGF protein and gelatinase activity than parental or control-transfected cells and did not grow at ectopic or orthotopic sites. Collectively the data provide direct evidence that IFN-$\alpha/\beta$ can inhibit angiogenesis via down-regulation of angiogenesis-stimulating cytokines. ^