915 resultados para Estimation error
Resumo:
We address the problem of estimating the fundamental frequency of voiced speech. We present a novel solution motivated by the importance of amplitude modulation in sound processing and speech perception. The new algorithm is based on a cumulative spectrum computed from the temporal envelope of various subbands. We provide theoretical analysis to derive the new pitch estimator based on the temporal envelope of the bandpass speech signal. We report extensive experimental performance for synthetic as well as natural vowels for both realworld noisy and noise-free data. Experimental results show that the new technique performs accurate pitch estimation and is robust to noise. We also show that the technique is superior to the autocorrelation technique for pitch estimation.
Resumo:
We present an extrema based unwarping technique for signals with time-varying periodicity. We show that for arbitrary variation of pitch periodicity in speech signal,the unwarping technique maps the signals to periodic signals which enable eficient estimation of periodicity. We demonstrate the e�ectiveness of the new technique using both synthetic and real speech signals.
Resumo:
A new composition path, Xi-Xj=constant, is suggested for the semi-empirical calculation of the thermodynamic properties of ternary ‘substitutional’ solutions from binary data, when the binary systems show deviations from the regular solution model. A comparison is made between the results obtained for integral and partial properties using this composition path and those calculated employing other composition paths suggested in literature. It appears that the best estimate of the ternary properties is obtained when binary data at compositions closest to the ternary composition are used.
Resumo:
In this paper, we consider robust joint designs of relay precoder and destination receive filters in a nonregenerative multiple-input multiple-output (MIMO) relay network. The network consists of multiple source-destination node pairs assisted by a MIMO-relay node. The channel state information (CSI) available at the relay node is assumed to be imperfect. We consider robust designs for two models of CSI error. The first model is a stochastic error (SE) model, where the probability distribution of the CSI error is Gaussian. This model is applicable when the imperfect CSI is mainly due to errors in channel estimation. For this model, we propose robust minimum sum mean square error (SMSE), MSE-balancing, and relay transmit power minimizing precoder designs. The next model for the CSI error is a norm-bounded error (NBE) model, where the CSI error can be specified by an uncertainty set. This model is applicable when the CSI error is dominated by quantization errors. In this case, we adopt a worst-case design approach. For this model, we propose a robust precoder design that minimizes total relay transmit power under constraints on MSEs at the destination nodes. We show that the proposed robust design problems can be reformulated as convex optimization problems that can be solved efficiently using interior-point methods. We demonstrate the robust performance of the proposed design through simulations.
Resumo:
Direction Of Arrival (DOA) estimation, using a sensor array, in the presence of non-Gaussian noise using Fractional Lower-Order Moments (FLOM)matrices is studied. In this paper, a new FLOM based technique using the Fractional Lower Order Infinity Norm based Covariance (FLIC) Matrix is proposed. The bounded property and the low-rank subspace structure of the FLIC matrix is derived. Performance of FLIC based DOA estimation using MUSIC, ESPRIT, is shown to be better than other FLOM based methods.
Resumo:
Evaluation of the probability of error in decision feedback equalizers is difficult due to the presence of a hard limiter in the feedback path. This paper derives the upper and lower bounds on the probability of a single error and multiple error patterns. The bounds are fairly tight. The bounds can also be used to select proper tap gains of the equalizer.
Resumo:
Upper bounds on the probability of error due to co-channel interference are proposed in this correspondence. The bounds are easy to compute and can be fairly tight.
Resumo:
A novel procedure to determine the series capacitance of a transformer winding, based on frequency-response measurements, is reported. It is based on converting the measured driving-point impedance magnitude response into a rational function and thereafter exploiting the ratio of a specific coefficient in the numerator and denominator polynomial, which leads to the direct estimation of series capacitance. The theoretical formulations are derived for a mutually coupled ladder-network model, followed by sample calculations. The results obtained are accurate and its feasibility is demonstrated by experiments on model-coil and on actual, single, isolated transformer windings (layered, continuous disc, and interleaved disc). The authors believe that the proposed method is the closest one can get to indirectly measuring series capacitance.
Resumo:
In this paper, we address the design of codes which achieve modulation diversity in block fading single-input single-output (SISO) channels with signal quantization at the receiver. With an unquantized receiver, coding based on algebraic rotations is known to achieve maximum modulation coding diversity. On the other hand, with a quantized receiver, algebraic rotations may not guarantee gains in diversity. Through analysis, we propose specific rotations which result in the codewords having equidistant component-wise projections. We show that the proposed coding scheme achieves maximum modulation diversity with a low-complexity minimum distance decoder and perfect channel knowledge. Relaxing the perfect channel knowledge assumption we propose a novel channel training/estimation technique to estimate the channel. We show that our coding/training/estimation scheme and minimum distance decoding achieves an error probability performance similar to that achieved with perfect channel knowledge.
Resumo:
A reliable method for service life estimation of the structural element is a prerequisite for service life design. A new methodology for durability-based service life estimation of reinforced concrete flexural elements with respect to chloride-induced corrosion of reinforcement is proposed. The methodology takes into consideration the fuzzy and random uncertainties associated with the variables involved in service life estimation by using a hybrid method combining the vertex method of fuzzy set theory with Monte Carlo simulation technique. It is also shown how to determine the bounds for characteristic value of failure probability from the resulting fuzzy set for failure probability with minimal computational effort. Using the methodology, the bounds for the characteristic value of failure probability for a reinforced concrete T-beam bridge girder has been determined. The service life of the structural element is determined by comparing the upper bound of characteristic value of failure probability with the target failure probability. The methodology will be useful for durability-based service life design and also for making decisions regarding in-service inspections.