983 resultados para Escherichia coli - Patogenicidade
Resumo:
In the synthesis of inorganic polyphosphate (polyP) from ATP by polyphosphate kinase (PPK; EC 2.7.4.1) of Escherichia coli, an N—P-linked phosphoenzyme was previously identified as the intermediate. The phosphate is presumed to be linked to N3 of the histidine residue because of its chemical stabilities and its resemblance to other enzymes known to contain N3-phosphohistidine. Tryptic digests of [32P]PPK contain a predominant 32P-labeled peptide that includes His-441. Of the 16 histidine residues in PPK of E. coli, 4 are conserved among several bacterial species. Mutagenesis of these 4 histidines shows that two (His-430 and His-598) are unaffected in function when mutated to glutamine, whereas two others (His-441 and His-460) mutated to glutamine or alanine fail to be phosphorylated, show no enzymatic activities, and fail to support polyP accumulation in cells bearing these mutant enzymes.
Resumo:
It was previously shown that coexpression of the lactose permease of Escherichia coli in two contiguous fragments leads to functional complementation. We demonstrate here that site-directed thiol crosslinking of coexpressed permease fragments can be used to determine helix proximity in situ without the necessity of purifying the permease. After coexpression of the six N-terminal (N6) and six C-terminal (C6) transmembrane helices, each with a single Cys residue, crosslinking was carried out in native membranes and assessed by the mobility of anti-C-terminal-reactive polypeptides on immunoblots. A Cys residue at position 242 or 245 (helix VII) forms a disulfide with a Cys residue at either position 28 or 29 (helix I), but not with a Cys residue at position 27, which is on the opposite face of helix I, thereby indicating that the face of helix I containing Pro-28 and Phe-29 is close to helix VII. Similarly, a Cys residue at position 242 or 245 (helix VII) forms a disulfide with a Cys residue at either position 52 or 53 (helix II), but not with a Cys residue at position 54. Furthermore, low-efficiency crosslinking is observed between a Cys residue at position 52 or 53 and a Cys residue at position 361 (helix XI). The results indicate that helix VII lies in close proximity to both helices I and II and that helix II is also close to helix XI. The method should be applicable to a number of different polytopic membrane proteins.
Resumo:
We engineered a full-length (8.3-kbp) cDNA coding for fatty acid synthase (FAS; EC 2.3.1.85) from the human brain FAS cDNA clones we characterized previously. In the process of accomplishing this task, we developed a novel PCR procedure, recombinant PCR, which is very useful in joining two overlapping DNA fragments that do not have a common or unique restriction site. The full-length cDNA was cloned in pMAL-c2 for heterologous expression in Escherichia coli as a maltose-binding protein fusion. The recombinant protein was purified by using amylose-resin affinity and hydroxylapatite chromatography. As expected from the coding capacity of the cDNA expressed, the chimeric recombinant protein has a molecular weight of 310,000 and reacts with antibodies against both human FAS and maltose-binding protein. The maltose-binding protein-human FAS (MBP-hFAS) catalyzed palmitate synthesis from acetyl-CoA, malonyl-CoA, and NADPH and exhibited all of the partial activities of FAS at levels comparable with those of the native human enzyme purified from HepG2 cells. Like the native HepG2 FAS, the products of MBP-hFAS are mainly palmitic acid (>90%) and minimal amounts of stearic and arachidic acids. Similarly, a human FAS cDNA encoding domain I (β-ketoacyl synthase, acetyl-CoA and malonyl-CoA transacylases, and β-hydroxyacyl dehydratase) was cloned and expressed in E. coli using pMAL-c2. The expressed fusion protein, MBP-hFAS domain I, was purified to apparent homogeneity (Mr 190,000) and exhibited the activities of the acetyl/malonyl transacylases and the β-hydroxyacyl dehydratase. In addition, a human FAS cDNA encoding domains II and III (enoyl and β-ketoacyl reductases, acyl carrier protein, and thioesterase) was cloned in pET-32b(+) and expressed in E. coli as a fusion protein with thioredoxin and six in-frame histidine residues. The recombinant fusion protein, thioredoxin-human FAS domains II and III, that was purified from E. coli had a molecular weight of 159,000 and exhibited the activities of the enoyl and β-ketoacyl reductases and the thioesterase. Both the MBP and the thioredoxin-His-tags do not appear to interfere with the catalytic activity of human FAS or its partial activities.
Resumo:
Current evidence suggests that the length of poly(A) tails of bacterial mRNAs result from a competition between poly(A) polymerase and exoribonucleases that attack the 3′ ends of RNAs. Here, we show that host factor Hfq is also involved in poly(A) tail metabolism. Inactivation of the hfq gene reduces the length of poly(A) tails synthesized at the 3′ end of the rpsO mRNA by poly(A) polymerase I in vivo. In vitro, Hfq stimulates synthesis of long tails by poly(A) polymerase I. The strong binding of Hfq to oligoadenylated RNA probably explains why it stimulates elongation of primers that already harbor tails of 20–35 A. Polyadenylation becomes processive in the presence of Hfq. The similar properties of Hfq and the PABPII poly(A) binding protein, which stimulates poly(A) tail elongation in mammals, indicates that similar mechanisms control poly(A) tail synthesis in prokaryotes and eukaryotes.
Resumo:
Escherichia coli muk mutants are temperature-sensitive and produce anucleate cells. A spontaneously occurring mutation was found in a ΔmukB∷kan mutant strain that suppressed the temperature-sensitive phenotype and mapped in or near topA, the gene that encodes topoisomerase I. Previously characterized topA mutations, topA10 and topA66, were found to be general suppressors of muk mutants: they suppressed temperature sensitivity and anucleate cell production of cells containing null or point mutations in mukB and null mutations in mukE or mukF. The suppression correlated with excess negative supercoiling by DNA gyrase, and the gyrase inhibitor, coumermycin, reversed it. Defects in topA allow 99% of cell division events in muk null mutants to proceed without chromosome loss or loss of cell viability. This observation imposes important limitations on models for Muk activity and is consistent with a role for MukBEF in chromosome folding and DNA condensation.
Resumo:
From mutants of Escherichia coli unable to utilize fructose via the phosphoenolpyruvate/glycose phosphotransferase system (PTS), further mutants were selected that grow on fructose as the sole carbon source, albeit with relatively low affinity for that hexose (Km for growth ≈8 mM but with Vmax for generation time ≈1 h 10 min); the fructose thus taken into the cells is phosphorylated to fructose 6-phosphate by ATP and a cytosolic fructo(manno)kinase (Mak). The gene effecting the translocation of fructose was identified by Hfr-mediated conjugations and by phage-mediated transduction as specifying an isoform of the membrane-spanning enzyme IIGlc of the PTS, which we designate ptsG-F. Exconjugants that had acquired ptsG+ from Hfr strains used for mapping (designated ptsG-I) grew very poorly on fructose (Vmax ≈7 h 20 min), even though they were rich in Mak activity. A mutant of E. coli also rich in Mak but unable to grow on glucose by virtue of transposon-mediated inactivations both of ptsG and of the genes specifying enzyme IIMan (manXYZ) was restored to growth on glucose by plasmids containing either ptsG-F or ptsG-I, but only the former restored growth on fructose. Sequence analysis showed that the difference between these two forms of ptsG, which was reflected also by differences in the rates at which they translocated mannose and glucose analogs such as methyl α-glucoside and 2-deoxyglucose, resided in a substitution of G in ptsG-I by T in ptsG-F in the first position of codon 12, with consequent replacement of valine by phenylalanine in the deduced amino acid sequence.
Resumo:
Current global phylogenies are built predominantly on rRNA sequences. However, an experimental system for studying the evolution of rRNA is not readily available, mainly because the rRNA genes are highly repeated in most experimental organisms. We have constructed an Escherichia coli strain in which all seven chromosomal rRNA operons are inactivated by deletions spanning the 16S and 23S coding regions. A single E. coli rRNA operon carried by a multicopy plasmid supplies 16S and 23S rRNA to the cell. By using this strain we have succeeded in creating microorganisms that contain only a foreign rRNA operon derived from either Salmonella typhimurium or Proteus vulgaris, microorganisms that have diverged from E. coli about 120–350 million years ago. We also were able to replace the E. coli rRNA operon with an E. coli/yeast hybrid one in which the GTPase center of E. coli 23S rRNA had been substituted by the corresponding domain from Saccharomyces cerevisiae. These results suggest that, contrary to common belief, coevolution of rRNA with many other components in the translational machinery may not completely preclude the horizontal transfer of rRNA genes.
Resumo:
The sequencing of the human genome has led to the identification of many genes whose functions remain to be determined. Because of conservation of genetic function, microbial systems have often been used for identification and characterization of human genes. We have investigated the use of the Escherichia coli SOS induction assay as a screen for yeast and human genes that might play a role in DNA metabolism and/or in genome stability. The SOS system has previously been used to analyze bacterial and viral genes that directly modify DNA. An initial screen of meiotically expressed yeast genes revealed several genes associated with chromosome metabolism (e.g., RAD51 and HHT1 as well as others). The SOS induction assay was then extended to the isolation of human genes. Several known human genes involved in DNA metabolism, such as the Ku70 end-binding protein and DNA ligase IV, were identified, as well as a large number of previously unknown genes. Thus, the SOS assay can be used to identify and characterize human genes, many of which may participate in chromosome metabolism.
Resumo:
The degradation of the RpoS (σS) subunit of RNA polymerase in Escherichia coli is a prime example of regulated proteolysis in prokaryotes. RpoS turnover depends on ClpXP protease, the response regulator RssB, and a hitherto uncharacterized “turnover element” within RpoS itself. Here we localize the turnover element to a small element (around the crucial amino acid lysine-173) directly downstream of the promoter-recognizing region 2.4 in RpoS. Its sequence as well as its location identify the turnover element as a unique proteolysis-promoting motif. This element is shown to be a site of interaction with RssB. Thus, RssB is functionally unique among response regulators as a direct recognition factor in ClpXP-dependent RpoS proteolysis. Binding of RssB to RpoS is stimulated by phosphorylation of the RssB receiver domain, suggesting that environmental stress affects RpoS proteolysis by modulating RssB affinity for RpoS. Initial evidence indicates that lysine-173 in RpoS, besides being essential of RpoS proteolysis, may play a role in promoter recognition. Thus the same region in RpoS is crucial for proteolysis as well as for activity as a transcription factor.
Resumo:
As the study of microbes moves into the era of functional genomics, there is an increasing need for molecular tools for analysis of a wide diversity of microorganisms. Currently, biological study of many prokaryotes of agricultural, medical, and fundamental scientific interest is limited by the lack of adequate genetic tools. We report the application of the bacterial artificial chromosome (BAC) vector to prokaryotic biology as a powerful approach to address this need. We constructed a BAC library in Escherichia coli from genomic DNA of the Gram-positive bacterium Bacillus cereus. This library provides 5.75-fold coverage of the B. cereus genome, with an average insert size of 98 kb. To determine the extent of heterologous expression of B. cereus genes in the library, we screened it for expression of several B. cereus activities in the E. coli host. Clones expressing 6 of 10 activities tested were identified in the library, namely, ampicillin resistance, zwittermicin A resistance, esculin hydrolysis, hemolysis, orange pigment production, and lecithinase activity. We analyzed selected BAC clones genetically to identify rapidly specific B. cereus loci. These results suggest that BAC libraries will provide a powerful approach for studying gene expression from diverse prokaryotes.
Resumo:
Escherichia coli O157:H7 causes Shiga toxin (Stx)-mediated vascular damage, resulting in hemorrhagic colitis and the hemolytic uremic syndrome in humans. These infections are often foodborne, and healthy carrier cattle are a major reservoir of E. coli O157:H7. We were interested in knowing why cattle are tolerant to infection with E. coli O157:H7. Cattle tissues were examined for the Stx receptor globotriaosylceramide (Gb3), for receptivity to Stx binding in vitro, and for susceptibility to the enterotoxic effects of Stx in vivo. TLC was used to detect Gb3 in tissues from a newborn calf. Gb3 was detected by TLC in kidney and brain, but not in the gastrointestinal tract. Immunohistochemistry was used to define binding of Stx1 and Stx2 overlaid onto sections from cattle tissues. Stx1 and Stx2 bound to selected tubules in the cortex of the kidney of both newborn calves (n = 3) and adult cattle (n = 3). Stx did not bind to blood vessels in any of the six gastrointestinal and five extraintestinal organs examined. The lack of Gb3 and of Stx receptivity in the gastrointestinal tract raised questions about the toxicity of Stx in bovine intestine. We found that neither viable E. coli O157:H7 nor Stx-containing bacterial extracts were enterotoxic (caused fluid accumulation) in ligated ileal loops in newborn calves. The lack of vascular receptors for Stx provides insight into why cattle are tolerant reservoir hosts for E. coli O157:H7.
Resumo:
The evolutionary relationships of 46 Shigella strains representing each of the serotypes belonging to the four traditional Shigella species (subgroups), Dysenteriae, Flexneri, Boydii, and Sonnei, were determined by sequencing of eight housekeeping genes in four regions of the chromosome. Analysis revealed a very similar evolutionary pattern for each region. Three clusters of strains were identified, each including strains from different subgroups. Cluster 1 contains the majority of Boydii and Dysenteriae strains (B1–4, B6, B8, B10, B14, and B18; and D3–7, D9, and D11–13) plus Flexneri 6 and 6A. Cluster 2 contains seven Boydii strains (B5, B7, B9, B11, B15, B16, and B17) and Dysenteriae 2. Cluster 3 contains one Boydii strain (B12) and the Flexneri serotypes 1–5 strains. Sonnei and three Dysenteriae strains (D1, D8, and D10) are outside of the three main clusters but, nonetheless, are clearly within Escherichia coli. Boydii 13 was found to be distantly related to E. coli. Shigella strains, like the other pathogenic forms of E. coli, do not have a single evolutionary origin, indicating convergent evolution of Shigella phenotypic properties. We estimate the three main Shigella clusters to have evolved within the last 35,000 to 270,000 years, suggesting that shigellosis was one of the early infectious diseases of humans.
Resumo:
We studied the effect of pH on ligand binding in wild-type lactose permease or mutants in the four residues—Glu-269, Arg-302, His-322, and Glu-325—that are the key participants in H+ translocation and coupling between sugar and H+ translocation. Although wild-type permease or mutants in Glu-325 and Arg-302 exhibit marked decreases in affinity at alkaline pH, mutants in either His-322 or Glu-269 do not titrate. The results offer a mechanistic model for lactose/H+ symport. In the ground state, the permease is protonated, the H+ is shared between His-322 and Glu-269, Glu-325 is charge-paired with Arg-302, and substrate is bound with high affinity at the outside surface. Substrate binding induces a conformational change that leads to transfer of the H+ from His-322/Glu-269 to Glu-325 and reorientation of the binding site to the inner surface with a decrease in affinity. Glu-325 then is deprotonated on the inside because of rejuxtaposition with Arg-302. The His-322/Glu-269 complex then is reprotonated from the outside surface to reinitiate the cycle.
Resumo:
The active-site cysteines of DsbA, the periplasmic disulfide-bond-forming enzyme of Escherichia coli, are kept oxidized by the cytoplasmic membrane protein DsbB. DsbB, in turn, is oxidized by two kinds of quinones (ubiquinone for aerobic and menaquinone for anaerobic growth) in the electron-transport chain. We describe the isolation of dsbB missense mutations that change a highly conserved arginine residue at position 48 to histidine or cysteine. In these mutants, DsbB functions reasonably well aerobically but poorly anaerobically. Consistent with this conditional phenotype, purified R48H exhibits very low activity with menaquinone and an apparent Michaelis constant (Km) for ubiquinone seven times greater than that of the wild-type DsbB, while keeping an apparent Km for DsbA similar to that of wild-type enzyme. From these results, we propose that this highly conserved arginine residue of DsbB plays an important role in the catalysis of disulfide bond formation through its role in the interaction of DsbB with quinones.
Resumo:
Mechanisms of bacterial pathogenesis have become an increasingly important subject as pathogens have become increasingly resistant to current antibiotics. The adhesion of microorganisms to the surface of host tissue is often a first step in pathogenesis and is a plausible target for new antiinfective agents. Examination of bacterial adhesion has been difficult both because it is polyvalent and because bacterial adhesins often recognize more than one type of cell-surface molecule. This paper describes an experimental procedure that measures the forces of adhesion resulting from the interaction of uropathogenic Escherichia coli to molecularly well defined models of cellular surfaces. This procedure uses self-assembled monolayers (SAMs) to model the surface of epithelial cells and optical tweezers to manipulate the bacteria. Optical tweezers orient the bacteria relative to the surface and, thus, limit the number of points of attachment (that is, the valency of attachment). Using this combination, it was possible to quantify the force required to break a single interaction between pilus and mannose groups linked to the SAM. These results demonstrate the deconvolution and characterization of complicated events in microbial adhesion in terms of specific molecular interactions. They also suggest that the combination of optical tweezers and appropriately functionalized SAMs is a uniquely synergistic system with which to study polyvalent adhesion of bacteria to biologically relevant surfaces and with which to screen for inhibitors of this adhesion.