980 resultados para Enzymes production
Resumo:
The paper focuses on the use of oxygen and steam as the gasification agents in the thermochemical conversion of biomass to produce hydrogen rich syngas, using a downdraft reactor configuration. Performance of the reactor is evaluated for different equivalence ratios (ER), steam to biomass ratios (SBR) and moisture content in the fuel. The results are compared and evaluated with chemical equilibrium analysis and reaction kinetics along with the results available in the literature. Parametric study suggests that, with increase in SBR, hydrogen fraction in the syngas increases but necessitates an increase in the ER to maintain reactor temperature toward stable operating conditions. SBR is varied from 0.75 to 2.7 and ER from 0.18 to 0.3. The peak hydrogen yield is found to be 104g/kg of biomass at SBR of 2.7. Further, significant enhancement in H-2 yield and H-2 to CO ratio is observed at higher SBR (SBR=1.5-2.7) compared with lower range SBR (SBR=0.75-1.5). Experiments were conducted using wet wood chips to induce moisture into the reacting system and compare the performance with dry wood with steam. The results clearly indicate the both hydrogen generation and the gasification efficiency ((g)) are better in the latter case. With the increase in SBR, gasification efficiency ((g)) and lower heating value (LHV) tend to reduce. Gasification efficiency of 85.8% is reported with LHV of 8.9MJNm(-3) at SBR of 0.75 compared with 69.5% efficiency at SBR of 2.5 and lower LHV of 7.4 at MJNm(-3) at SBR of 2.7. These are argued on the basis of the energy required for steam generation and the extent of steam consumption during the reaction, which translates subsequently in the LHV of syngas. From the analysis of the results, it is evident that reaction kinetics plays a crucial role in the conversion process. The study also presents the importance of reaction kinetics, which controls the overall performance related to efficiency, H-2 yield, H-2 to CO fraction and LHV of syngas, and their dependence on the process parameters SBR and ER. Copyright (c) 2013 John Wiley & Sons, Ltd.
Resumo:
Restriction endonucleases interact with DNA at specific sites leading to cleavage of DNA. Bacterial DNA is protected from restriction endonuclease cleavage by modifying the DNA using a DNA methyltransferase. Based on their molecular structure, sequence recognition, cleavage position and cofactor requirements, restriction-modification (R-M) systems are classified into four groups. Type III R-M enzymes need to interact with two separate unmethylated DNA sequences in inversely repeated head-to-head orientations for efficient cleavage to occur at a defined location (25-27 bp downstream of one of the recognition sites). Like the Type I R-M enzymes, Type III R-M enzymes possess a sequence-specific ATPase activity for DNA cleavage. ATP hydrolysis is required for the long-distance communication between the sites before cleavage. Different models, based on 1D diffusion and/or 3D-DNA looping, exist to explain how the long-distance interaction between the two recognition sites takes place. Type III R-M systems are found in most sequenced bacteria. Genome sequencing of many pathogenic bacteria also shows the presence of a number of phase-variable Type III R-M systems, which play a role in virulence. A growing number of these enzymes are being subjected to biochemical and genetic studies, which, when combined with ongoing structural analyses, promise to provide details for mechanisms of DNA recognition and catalysis.
Resumo:
This paper describes a spatio-temporal registration approach for speech articulation data obtained from electromagnetic articulography (EMA) and real-time Magnetic Resonance Imaging (rtMRI). This is motivated by the potential for combining the complementary advantages of both types of data. The registration method is validated on EMA and rtMRI datasets obtained at different times, but using the same stimuli. The aligned corpus offers the advantages of high temporal resolution (from EMA) and a complete mid-sagittal view (from rtMRI). The co-registration also yields optimum placement of EMA sensors as articulatory landmarks on the magnetic resonance images, thus providing richer spatio-temporal information about articulatory dynamics. (C) 2014 Acoustical Society of America
Resumo:
We consider ZH and WH production at the Large Hadron Collider, where the Higgs decays to a b (b) over bar pair. We use jet substructure techniques to reconstruct the Higgs boson and construct angular observables involving leptonic decay products of the vector bosons. These efficiently discriminate between the tensor structure of the HVV vertex expected in the Standard Model and that arising from possible new physics, as quantified by higher dimensional operators. This can then be used to examine the CP nature of the Higgs as well as CP mixing effects in the HZZ and HWW vertices separately. (C) 2014 Elsevier B.V.
Resumo:
Taxol (R) (generic name paclitaxel) represents one of the most clinically valuable natural products known to mankind in the recent past. More than two decades have elapsed since the notable discovery of the first Taxol (R) producing endophytic fungus, which was followed by a plethora of reports on other endophytes possessing similar biosynthetic potential. However, industrial-scale Taxol (R) production using fungal endophytes, although seemingly promising, has not seen the light of the day. In this opinion article, we embark on the current state of knowledge on Taxol (R) biosynthesis focusing on the chemical ecology of its producers, and ask whether it is actually possible to produce Taxol (R) using endophyte biotechnology. The key problems that have prevented the exploitation of potent endophytic fungi by industrial bioprocesses for sustained production of Taxol (R) are discussed.
Resumo:
Enzymes utilizing pyridoxal 5'-phosphate dependent mechanism for catalysis are observed in all cellular forms of living organisms. PLP-dependent enzymes catalyze a wide variety of reactions involving amino acid substrates and their analogs. Structurally, these ubiquitous enzymes have been classified into four major fold types. We have carried out investigations on the structure and function of fold type I enzymes serine hydroxymethyl transferase and acetylornithine amino transferase, fold type n enzymes catabolic threonine deaminase, D-serine deaminase, D-cysteine desulfhydrase and diaminopropionate ammonia lyase. This review summarizes the major findings of investigations on fold type II enzymes in the context of similar studies on other PLP-dependent enzymes. Fold type II enzymes participate in pathways of both degradation and synthesis of amino acids. Polypeptide folds of these enzymes, features of their active sites, nature of interactions between the cofactor and the polypeptide, oligomeric structure, catalytic activities with various ligands, origin of specificity and plausible regulation of activity are briefly described. Analysis of the available crystal structures of fold type II enzymes revealed five different classes. The dimeric interfaces found in these enzymes vary across the classes and probably have functional significance.
Resumo:
Precise control of supercoiling homeostasis is critical to DNA-dependent processes such as gene expression, replication, and damage response. Topoisomerases are central regulators of DNA supercoiling commonly thought to act independently in the recognition and modulation of chromosome superstructure; however, recent evidence has indicated that cells tightly regulate topoisomerase activity to support chromosome dynamics, transcriptional response, and replicative events. How topoisomerase control is executed and linked to the internal status of a cell is poorly understood. To investigate these connections, we determined the structure of Escherichia coil gyrase, a type HA topoisomerase bound to YacG, a recently identified chromosomally encoded inhibitor protein. Phylogenetic analyses indicate that YacG is frequently associated with coenzyme A (CoA) production enzymes, linking the protein to metabolism and stress. The structure, along with supporting solution studies, shows that YacG represses gyrase by sterically occluding the principal DNA-binding site of the enzyme. Unexpectedly, YacG acts by both engaging two spatially segregated regions associated with small-molecule inhibitor interactions (fluoroquinolone antibiotics and the newly reported antagonist GSK299423) and remodeling the gyrase holo enzyme into an inactive, ATP-trapped configuration. This study establishes a new mechanism for the protein-based control of topoisomerases, an approach that may be used to alter supercoiling levels for responding to changes in cellular state.
Resumo:
Background: Dictamnus dasycarpus is widely used as a traditional remedy for the treatment of eczema, rheumatism, and other inflammatory diseases in Asia. The current study investigates the molecular mechanism of anti-inflammatory action of the ethanol extract of Dictamnus dasycarpus leaf (DE) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Methods: Nitric oxide (NO) production was assessed by Griess reaction and the mRNA and protein expressions of pro inflammatory cytokines, transcription factor, and enzymes were determined by real-time RT-PCR and immunoblotting analysis. Results: DE (0.5 and 1 mg/mL) suppressed the NO production by 10 and 33%, respectively, compared to the untreated group in LPS-stimulated RAW 264.7 cells. DE (0.5 and 1 mg/mL) reduced the mRNA expression of key transcription factor nuclear factor-kappa B by 7 and 24%, respectively compared to the untreated group in LPS activated macrophage. The pro inflammatory cytokines such as tumor necrosis factor a and interleukin 1 beta were also decreased by DE treatment. Moreover, the protein expression of pro inflammatory enzymes, inducible nitric oxide synthase and cyclooxygenase 2 were also dramatically attenuated by DE in a dose dependent manner. Conclusions: These results suggest that Dictamnus dasycarpus leaf has a potent anti-inflammatory activity and can be used for the development of new anti-inflammatory agents.
Resumo:
USC-TIMIT is an extensive database of multimodal speech production data, developed to complement existing resources available to the speech research community and with the intention of being continuously refined and augmented. The database currently includes real-time magnetic resonance imaging data from five male and five female speakers of American English. Electromagnetic articulography data have also been presently collected from four of these speakers. The two modalities were recorded in two independent sessions while the subjects produced the same 460 sentence corpus used previously in the MOCHA-TIMIT database. In both cases the audio signal was recorded and synchronized with the articulatory data. The database and companion software are freely available to the research community. (C) 2014 Acoustical Society of America.
Resumo:
We estimate transverse spin single spin asymmetry(TSSA) in the process e + p(up arrow) -> J/psi + X using color evaporation model of charmonium production. We take into account transverse momentum dependent(TMD) evolution of Sivers function and parton distribution function and show that the there is a reduction in the asymmetry as compared to our earlier estimates wherein the Q(2) - evolution was implemented only through DGLAP evolution of unpolarized gluon densities.
Resumo:
Measurement of the self-coupling of the 125 GeV Higgs boson is one of the most crucial tasks for a high luminosity run of the LHC, and it can only be measured in the di-Higgs final state. In the minimal supersymmetric standard model, heavy CP even Higgs (H) can decay into a lighter 125 GeV Higgs boson (h) and, therefore, can influence the rate of di-Higgs production. We investigate the role of single H production in the context of measuring the self-coupling of h. We have found that the H -> hh decay can change the value of Higgs (h) self-coupling substantially, in a low tan beta regime where the mass of the heavy Higgs boson lies between 250 and 600 GeV and, depending on the parameter space, it may be seen as an enhancement of the self-coupling of the 125 GeV Higgs boson.
Resumo:
We analyse the hVV (V = W, Z) vertex in a model independent way using Vh production. To that end, we consider possible corrections to the Standard Model Higgs Lagrangian, in the form of higher dimensional operators which parametrise the effects of new physics. In our analysis, we pay special attention to linear observables that can be used to probe CP violation in the same. By considering the associated production of a Higgs boson with a vector boson (W or Z), we use jet substructure methods to define angular observables which are sensitive to new physics effects, including an asymmetry which is linearly sensitive to the presence of CP odd effects. We demonstrate how to use these observables to place bounds on the presence of higher dimensional operators, and quantify these statements using a log likelihood analysis. Our approach allows one to probe separately the hZZ and hWW vertices, involving arbitrary combinations of BSM operators, at the Large Hadron Collider.
Resumo:
A comparative study of two bacterial strains namely, Bacillus licheniformis and Bacillus firmus in the production of bioflocculants was made. The highest bioflocculant yield of 16.55 g/L was obtained from B. licheniformis (L) and 10 g/L from B. firmus (F). The bioflocculants obtained from the bacterial species were water soluble and insoluble in organic solvents. FTIR spectral analysis revealed the presence of hydroxyl, carboxyl and sugar derivatives in the bioflocculants. Thermal characterization by differential scanning calorimetry (DSC) showed the crystalline transition and the melting point (T-m) at 90-100 degrees C. Effects of bioflocculant dosage and pH on the flocculation of clay fines were evaluated. Highest bioflocculation efficiency on kaolin clay suspensions was observed at an optimum bioflocculant dosage of 5 g/L. The optimum pH range for the maximum bioflocculation was at pH 7-9. Bioflocculants exhibited high efficiency in dye decolorization. The maximum Cr (VI) removal was found to be 85 % for L (bioflocculant dosage at 2 g/L). This study demonstrates that microbial bioflocculants find potential applications in mineral processing such as selective flocculation of mineral fines, decolorization of dye solutions and in the remediation of toxic metal solutions. (C) 2015 Elsevier B.V. All rights reserved.