994 resultados para Enamel microabrasion


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effect of adding calcium ions and fluoride in the formulation of a whitening gel 35% hydrogen peroxide in its penetration through the dental structure, whitening efficacy and surface hardness of dental enamel. 80 teeth bovine incisors were used, which were obtained enamel and dentin disks of the buccal surface with 6mm diameter and 2mm thick (1 mm of enamel and dentin 1mm). The samples were divided into four groups stratified according to the protective substance / remineralizing added to the gel of hydrogen peroxide 35%: Group Ca - Calcium gluconate 0.5%; Group F - Sodium fluoride 0.2%; Group Ca + F - Calcium gluconate 0.5% and Sodium Fluoride 0.2%; Control group - no substance was added. The initial color of the samples and the hardness of the enamel were measured before the bleaching procedures. The specimens from each group were placed on a metallic support on which there was a simulated pulp chamber, which was filled with acetate buffer to collect and stabilize the penetrated peroxide. The respective bleaching treatments were applied 3 times, total of 30 minutes of application. The amount of peroxide which passed through the samples was determined by absorbance spectrophotometry. The hardness of the samples was measured immediately after bleaching. Next, the samples were immersed in artificial saliva for 7 days, after which the final color was evaluated. Data were statistically analyzed adopting a 5% significance level

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effect of adding calcium ions and fluoride in the formulation of a whitening gel 35% hydrogen peroxide in its penetration through the dental structure, whitening efficacy and surface hardness of dental enamel. 80 teeth bovine incisors were used, which were obtained enamel and dentin disks of the buccal surface with 6mm diameter and 2mm thick (1 mm of enamel and dentin 1mm). The samples were divided into four groups stratified according to the protective substance / remineralizing added to the gel of hydrogen peroxide 35%: Group Ca - Calcium gluconate 0.5%; Group F - Sodium fluoride 0.2%; Group Ca + F - Calcium gluconate 0.5% and Sodium Fluoride 0.2%; Control group - no substance was added. The initial color of the samples and the hardness of the enamel were measured before the bleaching procedures. The specimens from each group were placed on a metallic support on which there was a simulated pulp chamber, which was filled with acetate buffer to collect and stabilize the penetrated peroxide. The respective bleaching treatments were applied 3 times, total of 30 minutes of application. The amount of peroxide which passed through the samples was determined by absorbance spectrophotometry. The hardness of the samples was measured immediately after bleaching. Next, the samples were immersed in artificial saliva for 7 days, after which the final color was evaluated. Data were statistically analyzed adopting a 5% significance level

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Femtosecond lasers have been widely used in laser surgery as an instrument for contact-free tissue removal of hard dental, restorative materials, and osseous tissues, complementing conventional drilling or cutting tools. In order to obtain a laser system that provides an ablation efficiency comparable to mechanical instruments, the laser pulse rate must be maximal without causing thermal damage. The aim of this study was to compare the different morphological characteristics of the hard tissue after exposure to lasers operating in the femtosecond pulse regime. Two different kinds of samples were irradiated: dentin from human extracted teeth and bovine femur samples. Different procedures were applied, while paying special care to preserving the structures. The incubation factor S was calculated to be 0.788 +/- 0.004 for the bovine femur bone. These results indicate that the incubation effect is still substantial during the femtosecond laser ablation of hard tissues. The plasma-induced ablation has reduced side effects, i.e., we observe less thermal and mechanical damage when using a superficial femtosecond laser irradiation close to the threshold conditions. In the femtosecond regime, the morphology characteristics of the cavity were strongly influenced by the change of the effective number of pulses. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.4.048001]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: To investigate the potential of an active attachment biofilm model as a highthroughput demineralization biofilm model for the evaluation of caries-preventive agents. Methods: Streptococcus mutans UA159 biofilms were grown on bovine dentine discs in a highthroughput active attachment model. Biofilms were first formed in a medium with high buffer capacity for 24 h and then subjected to various photodynamic therapies (PACT) using the combination of Light Emitting Diodes (LEDs, Biotable (R)) and Photogem (R). Viability of the biofilms was evaluated by plate counts. To investigate treatment effects on dentine lesion formation, the treated biofilms were grown in a medium with low buffer capacity for an additional 24 h. Integrated mineral loss (IML) and lesion depth (LD) were assessed by transversal microradiography. Calcium release in the biofilm medium was measured by atomic absorption spectroscopy. Results: Compared to the water treated control group, significant reduction in viability of S. mutans biofilms was observed when the combination of LEDs and Photogem (R) was applied. LEDs or Photogem (R) only did not result in biofilm viability changes. Similar outcomes were also found for dentine lesion formation. Significant lower IML and LD values were only found in the group subjected to the combined treatment of LEDs and Photogem (R). There was a good correlation between the calcium release data and the IML or LD values. Conclusions: The high-throughput active attachment biofilm model is applicable for evaluating novel caries-preventive agents on both biofilm and demineralization inhibition. PACT had a killing effect on 24 h S. mutans biofilms and could inhibit the demineralization process. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This in vitro study evaluated the bond strength of adhesive restorative materials to sound and eroded dentin. Thirty-six bovine incisors were embedded in acrylic resin and ground to obtain flat buccal dentin surfaces. Specimens were randomly allocated in 2 groups: sound dentin (immersion in artificial saliva) and eroded dentin (pH cycling model - 3x / cola drink for 7 days). Specimens were then reassigned according to restorative material: glass ionomer cement (Ketac (TM) Molar Easy Mix), resin-modified glass ionomer cement (Vitremer (TM)) or adhesive system with resin composite (Adper Single Bond 2 + Filtek Z250). Polyethylene tubes with an internal diameter of 0.76 mm were placed over the dentin and filled with the material. The microshear bond test was performed after 24 h of water storage at 37 degrees C. The failure mode was evaluated using a stereomicroscope (400x). Bond strength data were analyzed with two-way ANOVA and Tukey's post hoc tests (alpha = 0.05). Eroded dentin showed bond strength values similar to those for sound dentin for all materials. The adhesive system showed the highest bond strength values, regardless of the substrate (p < 0.0001). For all groups, the adhesive/mixed failure prevailed. In conclusion, adhesive materials may be used in eroded dentin without jeopardizing the bonding quality. It is preferable to use an etch-and-rinse adhesive system because it shows the highest bond strength values compared with the glass ionomer cements tested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate the influence of different restorative procedures on the fracture resistance of endodontically treated teeth submitted to intracoronal bleaching. Fifty upper central incisors were distributed into 5 groups: GI - healthy teeth; GII - endodontically treated teeth sealed with Coltosol; GIII - endodontically treated teeth bleached and sealed with Coltosol; GIV - endodontically treated teeth bleached and restored with composite resin; and GV - endodontically treated teeth bleached and restored with a fiberglass post and composite resin. In the bleached specimens, a cervical seal was made prior to bleaching with 38% hydrogen peroxide. The gel was applied on the buccal surface and in the pulp chamber, and was then light-activated for 45 s. This procedure was repeated three times per session for four sessions, and each group was submitted to the restorative procedures described above. The specimens were submitted to fracture resistance testing in a universal testing machine. There were statistically significant differences among the groups (p < 0.05). The mean value found for GIII was the lowest (0.32 kN) and was significantly different from the values found for GI (0.75 kN), GII (0.67 kN), GIV (0.70 kN), and GV (0.72 kN), which were not significantly different from each other (p > 0.05). The restorative procedures using composite resin were found to successfully restore the fracture resistance of endodontically treated and bleached teeth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study evaluated color change, stability, and tooth sensitivity in patients submitted to different bleaching techniques. Material and methods: In this study, 48 patients were divided into five groups. A half-mouth design was conducted to compare two in-office bleaching bleaching techniques (with and without light activation): G1: 35% hydrogen peroxide (HP) (Lase Peroxide - DMC Equipments, Sao Carlos, SP, Brazil) + hybrid light (HL) (LED/Diode Laser, Whitening Lase II DMC Equipments, Sao Carlos, SP, Brazil); G2: 35% HP; G3: 38% HP (X-traBoost - Ultradent, South Jordan UT, USA) + HL; G4: 38% HP; and G5: 15% carbamide peroxide (CP) (Opalescence PF - Ultradent, South Jordan UT, USA). For G1 and G3, HP was applied on the enamel surface for 3 consecutive applications activated by HL. Each application included 3x3' HL activations with 1' between each interval; for G2 and G4, HP was applied 3x15' with 15' between intervals; and for G5, 15% CP was applied for 120'/10 days at home. A spectrophotometer was used to measure color change before the treatment and after 24 h, 1 week, 1, 6, 12, 18 and 24 months. A VAS questionnaire was used to evaluate tooth sensitivity before the treatment, immediately following treatment, 24 h after and finally 1 week after. Results: Statistical analysis did not reveal any significant differences between in-office bleaching with or without HL activation related to effectiveness; nevertheless the time required was less with HL. Statistical differences were observed between the result after 24 h, 1 week and 1, 6, 12, 18 and 24 months (integroup). Immediately, in-office bleaching increased tooth sensitivity. The groups activated with HL required less application time with gel. Conclusion: All techniques and bleaching agents used were effective and demonstrated similar behaviors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of the present study was to evaluate the erosive potential of different types (concentrated and powdered) and commercial brands of industrialised grape juices. The pH of all five fruit drinks was measured at two time points: immediately after preparation and 24 hours later. Sixty specimens of bovine enamel were randomly allocated and immersed in different types of grape juice (n = 10) for 10 minutes four times a day for fifteen days. The enamel alteration was analysed using surface Knoop microhardness (KHN) and surface roughness (R-a) tests at baseline and on the 5th, 10th and 15th days of the experiment. Two way ANOVA, Tukey's post hoc and Pearson's correlation tests were used for statistical analysis (alpha = 5%). The grape juices presented pH values ranging from 2.9 to 3.5. All of the tested juices promoted significant enamel mineral loss (p < 0.05) on the first evaluation (5th day of immersion) and produced a significant increase in the mean roughness from the 10th day on when compared to the control group (p < 0.05). By the 15th day, all of the beverages had produced surface roughnesses that were significantly higher than that of the control group. The results suggest that all grape juices, regardless of their commercial presentation, present erosive potential.