960 resultados para Emulsion Polymerization
Resumo:
High prevalence of anthelmintic-resistant gastrointestinal nematodes (GIN) in goats has increased pressure to find effective, alternative non-synthetic control methods, one of which is adding forage of the high condensed tannin (CT) legume sericea lespedeza (SL; Lespedeza cuneata) to the animal's diet. Previous work has demonstrated good efficacy of dried SL (hay, pellets) against small ruminant GIN, but information is lacking on consumption of fresh SL, particularly during the late summer–autumn period in the southern USA when perennial warm-season grass pastures are often low in quality. A study was designed to determine the effects of autumn (September–November) consumption of fresh SL forage, grass pasture (predominantly bermudagrass, BG; Cynodon dactylon), or a combination of SL + BG forage by young goats [intact male Spanish kids, 9 months old (20.7 ± 1.1 kg), n = 10/treatment group] on their GIN infection status. Three forage paddocks (0.40 ha) were set up at the Fort Valley State University Agricultural Research Station (Fort Valley, GA) for an 8-week trial. The goats in each paddock were supplemented with a commercial feed pellet at 0.45 kg/head/d for the first 4 weeks of the trial, and 0.27 kg/head/d for the final 4 weeks. Forage samples taken at the start of the trial were analyzed for crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF) content, and a separate set of SL samples was analyzed for CT in leaves, stems, and whole plant using the benzyl mercaptan thiolysis method. Animal weights were taken at the start and end of the trial, and fecal and blood samples were collected weekly for determination of fecal egg counts (FEC) and packed cell volume (PCV), respectively. Adult GIN was recovered from the abomasum and small intestines of all goats at the end of the experiment for counting and speciation. The CP levels were highest for SL forage, intermediate for SL + BG, and lowest for BG forage samples, while NDF and ADF values were the opposite, with highest levels in BG and lowest in SL forage samples. Sericea lespedeza leaves had more CT than stems (16.0 g vs. 3.3 g/100 g dry weight), a slightly higher percentage of PDs (98% vs. 94%, respectively) and polymers of larger mean degrees of polymerization (42 vs. 18, respectively). There were no differences in average daily gain or blood PCV between the treatment groups, but SL goats had lower FEC (P < 0.05) than the BG or SL + BG forage goats throughout most of the trial. The SL + BG goats had lower FEC than the BG forage animals by the end of the trial (week 8, P < 0.05). The SL goats had lower numbers (P < 0.05) of male Haemonchus contortus and tended to have fewer female (P < 0.10) and total (P < 0.07) H. contortus compared with the BG goats. The predominant GIN in all the goats was Trichostrongylus colubriformis (73% of total GIN). As a low-input forage with activity against pathogenic GIN (H. contortus), SL has a potential to reduce producers’ dependence upon synthetic anthelmintics and also to fill the autumn ‘window’ in good-quality fresh forages for goat grazing in the southern USA.
Resumo:
Our study investigated the effects of condensed tannins (CT) on rumen in vitro methane (CH4) production and fermentation characteristics by incubating lucerne in buffered rumen fluid in combination with different CT extracts at 0 (control), 40, 80 and 120 g CT/kg of substrate DM. Condensed tannins were extracted from four sainfoin accessions: Rees ‘A’, CPI63763, Cotswold Common and CPI63767. Gas production (GP) was measured using a fully automated GP apparatus with CH4 measured at distinct time points. Condensed tannins differed substantially in terms of polymer size and varied from 13 (Rees ‘A’) to 73 (CPI63767) mean degree of polymerization, but had relatively similar characteristics in terms of CT content, procyanidin: prodelphinidin (PC: PD) and cis:trans ratios. Compared to control, addition of CT from CPI63767 and CPI63763 at 80 and 120 g CT/kg of substrate DM reduced CH4 by 43% and 65%, and by 23% and 57%, respectively, after 24-h incubation. Similarly, CT from Rees ‘A’ and Cotswold Common reduced CH4 by 26% and 46%, and by 28% and 46% respectively. Addition of increasing level of CT linearly reduced the maximum rates of GP and CH4 production, and the estimated in vitro organic matter digestibility. There was a negative linear and quadratic (p < 0.01) relation between CT concentration and total volatile fatty acid (VFA) production. Inclusion of 80 and 120 g CT/kg of substrate DM reduced (p < 0.001) branched-chain VFA production and acetate: propionate ratio and was lowest for CPI63767. A decrease in proteolytic activity as indirectly shown by a change in VFA composition favouring a shift towards propionate and reduction in branched-chain VFA production varied with type of CT and was highest for CPI63767. In conclusion, these results suggest that tannin polymer size is an important factor affecting in vitro CH4 production which may be linked to the CT interaction with dietary substrate or microbial cells.
Resumo:
Cinnamon (Cinnamomum verum) has been shown to have anti-inflammatory and antimicrobial properties, but effects on parasitic worms of the intestine have not been investigated. Here, extracts of cinnamon bark were shown to have potent in vitro anthelmintic properties against the swine nematode Ascaris suum. Analysis of the extract revealed high concentrations of proanthocyanidins (PAC) and trans-cinnamaldehyde (CA). The PAC were subjected to thiolysis and HPLC-MS analysis which demonstrated that they were exclusively procyanidins, had a mean degree of polymerization of 5.2 and 21% of their inter-flavan-3-ol links were A-type linkages. Purification of the PAC revealed that whilst they had activity against A. suum, most of the potency of the extract derived from CA. Trichuris suis and Oesophagostomum dentatum larvae were similarly susceptible to CA. To test whether CA could reduce A. suum infection in pigs in vivo, CA was administered daily in the diet or as a targeted, encapsulated dose. However, infection was not significantly reduced. It is proposed that the rapid absorption or metabolism of CA in vivo may prevent it from being present in sufficient concentrations in situ to exert efficacy. Therefore, further work should focus on whether formulation of CA can enhance its activity against internal parasites.
Resumo:
Actin polymerization drives multiple cell processes involving movement and shape change. SCAR/WAVE proteins connect signaling to actin polymerization through the activation of the Arp2/3 complex. SCAR/WAVE is normally found in a complex with four other proteins: PIR121, Nap1, Abi2,and HSPC300 (Figure S1A available online) [1-3]. However,there is no consensus as to whether the complex functions as an unchanging unit or if it alters its composition in response to stimulation, as originally proposed by Edenet al. [1]. It also is unclear whether complex members exclusively regulate SCAR/WAVEs or if they have additional targets [4-6]. Here, we analyze the roles of the unique Dictyostelium Abi. We find that abiA null mutants show less severe defects in motility than do scar null cells, indicating--unexpectedly--that SCAR retains partial activity in the absence of Abi. Furthermore, abiA null mutants have a serious defect in cytokinesis, which is not seen in other SCAR complex mutants and is seen only when SCAR itself is present. Detailed examination reveals that normal cytokinesis requires SCAR activity, apparently regulated through multiple pathways.
Resumo:
Proanthocyanidins (PAs) in sainfoin (Onobrychis viciifolia Scop.) are of interest to ameliorate the sustainability of livestock production. However, sainfoin forage yield and PA concentrations, as well as their composition, require optimization. Individual plants of 27 sainfoin accessions from four continents were analyzed with LC-ESI-QqQ-MS/MS for PA concentrations and simple phenolic compounds. Large variability existed in PA concentrations (23.0–47.5 mg g–1 leaf dry matter (DM)), share of prodelphinidins (79–96%), and mean degree of polymerization (11–14) among, but also within, accessions. PAs were mainly located in leaves (26.8 mg g–1 DM), whereas stems had less PAs (7.8 mg g–1 DM). Overall, high-yielding plants had lower PA leaf concentrations (R2 = 0.16, P < 0.001) and fewer leaves (R2 = 0.66, P < 0.001). However, the results show that these two trade-offs between yield and bioactive PAs can be overcome.
Resumo:
We introduced photo-polymer networks into the various liquid crystalline phases of the antiferroelectric liquid crystal AS612 and studied the effects of these networks by measuring the temperature dependence of the Bragg wavelengths selectively reflected. After polymerization, the decrease in Bragg wavelengths with respect to the original values is consistent with a shorter helical pitch due to polymer network shrinkage. Also, by removing the liquid crystalline material, we are able to image the residual polymer network using scanning electron microscopy and polarized light microscopy. The polymer strands are a few microns thick and the networks show both chiral and non-chiral features.
Resumo:
Plants containing condensed tannins (CT) may have potential to control gastrointestinal nematodes (GIN) of cattle. The aim was to investigate the anthelmintic activities of four flavan-3-ols, two galloyl derivatives and 14 purified CT fractions, and to define which structural features of CT determine the anti-parasitic effects against the main cattle nematodes. We used in vitro tests targeting L1 larvae (feeding inhibition assay) and adults (motility assay) of Ostertagia ostertagi and Cooperia oncophora. In the larval feeding inhibition assay, O. ostertagi L1 were significantly more susceptible to all CT fractions than C. oncophora L1. The mean degree of polymerization of CT (i.e. average size) was the most important structural parameter: large CT reduced larval feeding more than small CT. The flavan-3-ols of prodelphinidin (PD)-type tannins had a stronger negative influence on parasite activity than the stereochemistry, i.e. cis- vs trans-configurations, or the presence of a gallate group. In contrast, for C. oncophora high reductions in the motility of larvae and adult worms were strongly related with a higher percentage of PDs within the CT fractions while there was no effect of size. Overall, the size and the percentage of PDs within CT seemed to be the most important parameters that influence anti-parasitic activity.
Resumo:
The tiger nut tuber of the Cyperus esculentus L. plant is an unusual storage system with similar amounts of starch and lipid. The extraction of its oil employing both mechanical pressing and aqueous enzymatic extraction (AEE) methods was investigated and an examination of the resulting products was carried out. The effects of particle size and moisture content of the tuber on the yield of tiger nut oil with pressing were initially studied. Smaller particles were found to enhance oil yields while a range of moisture content was observed to favour higher oil yields. When samples were first subjected to high pressures up to 700 MPa before pressing at 38 MPa there was no increase in the oil yields. Ground samples incubated with a mixture of α- Amylase, Alcalase, and Viscozyme (a mixture of cell wall degrading enzyme) as a pre-treatment, increased oil yield by pressing and 90% of oil was recovered as a result. When aqueous enzymatic extraction was carried out on ground samples, the use of α- Amylase, Alcalase, and Celluclast independently improved extraction oil yields compared to oil extraction without enzymes by 34.5, 23.4 and 14.7% respectively. A mixture of the three enzymes further augmented the oil yield and different operational factors were individually studied for their effects on the process. These include time, total mixed enzyme concentration, linear agitation speed, and solid-liquid ratio. The largest oil yields were obtained with a solid-liquid ratio of 1:6, mixed enzyme concentration of 1% (w/w) and 6 h incubation time although the longer time allowed for the formation of an emulsion. Using stationary samples during incubation surprisingly gave the highest oil yields, and this was observed to be as a result of gravity separation occurring during agitation. Furthermore, the use of high pressure processing up to 300 MPa as a pre-treatment enhanced oil yields but additional pressure increments had a detrimental effect. The quality of oils recovered from both mechanical and aqueous enzymatic extraction based on the percentage free fatty acid (% FFA) and peroxide values (PV) all reflected the good stabilities of the oils with the highest % FFA of 1.8 and PV of 1.7. The fatty acid profiles of all oils also remained unchanged. The level of tocopherols in oils were enhanced with both enzyme aided pressing (EAP) and high pressure processing before AEE. Analysis on the residual meals revealed DP 3 and DP 4 oligosaccharides present in EAP samples but these would require further assessment on their identity and quality.
Resumo:
An in vitro study was conducted to investigate the effects of condensed tannins (CT) structural properties, i.e. average polymer size (or mean degree of polymerization); percentage of cis flavan-3-ols and percentage of prodelphinidins in CT extracts on methane production (CH4) and fermentation characteristics. CT were extracted from eight plants in order to obtain different CT types: black currant leaves, goat willow leaves, goat willow twigs, pine bark, red currant leaves, sainfoin plants, weeping willow catkins and white clover flowers. They were analysed for CT content and CT composition by thiolytic degradation, followed by HPLC analysis. Grass silage was used as a control substrate. Condensed tannins were added to the substrate at a concentration of 40 g/kg, with or without polyethylene glycol (+ or −PEG 6000 treatment) to inactivate tannins, and then incubated for 72 h in mixed buffered rumen fluid from three different lactating dairy cows per run. Total cumulative gas production (GP) was measured by an automated gas production system. During the incubation, 12 gas samples (10 μl) were collected from each bottle headspace at 0, 2, 4, 6, 8, 12, 24, 30, 36, 48, 56 and 72 h of incubation and analyzed for CH4. A modified Michaelis–Menten model was fitted to the CH4 concentration patterns and model estimates were used to calculate total cumulative CH4 production (GPCH4). Total cumulative gas production and GPCH4 curves were fitted using biphasic and monophasic modified Michaelis-Menten models, respectively. Addition of PEG increased GP, GPCH4, and CH4 concentration compared to the −PEG treatment. All CT types reduced GPCH4 and CH4 concentration. All CT increased the half time of GP and GPCH4. Moreover, all CT decreased the maximum rate of fermentation for GPCH4 and rate of substrate degradation. The correlation between CT structure and GPCH4 and fermentation characteristics showed that the proportion of prodelphinidins within CT had the largest effect on fermentation characteristics, followed by average 27 polymer size and percentage of cis-flavan-3-ols.
Resumo:
OBJECTIVE: Thiol isomerases facilitate protein folding in the endoplasmic reticulum, and several of these enzymes, including protein disulfide isomerase and ERp57, are mobilized to the surface of activated platelets, where they influence platelet aggregation, blood coagulation, and thrombus formation. In this study, we examined the synthesis and trafficking of thiol isomerases in megakaryocytes, determined their subcellular localization in platelets, and identified the cellular events responsible for their movement to the platelet surface on activation. APPROACH AND RESULTS: Immunofluorescence microscopy imaging was used to localize protein disulfide isomerase and ERp57 in murine and human megakaryocytes at various developmental stages. Immunofluorescence microscopy and subcellular fractionation analysis were used to localize these proteins in platelets to a compartment distinct from known secretory vesicles that overlaps with an inner cell-surface membrane region defined by the endoplasmic/sarcoplasmic reticulum proteins calnexin and sarco/endoplasmic reticulum calcium ATPase 3. Immunofluorescence microscopy and flow cytometry were used to monitor thiol isomerase mobilization in activated platelets in the presence and absence of actin polymerization (inhibited by latrunculin) and in the presence or absence of membrane fusion mediated by Munc13-4 (absent in platelets from Unc13dJinx mice). CONCLUSIONS: Platelet-borne thiol isomerases are trafficked independently of secretory granule contents in megakaryocytes and become concentrated in a subcellular compartment near the inner surface of the platelet outer membrane corresponding to the sarco/endoplasmic reticulum of these cells. Thiol isomerases are mobilized to the surface of activated platelets via a process that requires actin polymerization but not soluble N-ethylmaleimide-sensitive fusion protein attachment receptor/Munc13-4-dependent vesicular-plasma membrane fusion.
Resumo:
Aims: The study evaluated the influence of light curing units and immersion media on superficial morphology and chemistry of the nanofilled composite resin Supreme XT (3M) through the EDX analysis and SEM evaluation. Light curing units with different power densities and mode of application used were XL 3000 (480 mW/cm(2)), Jet Lite 4000 Plus (1230mW/cm(2)), and Ultralume Led 5 (790 mW/cm(2)) and immersion media were artificial saliva, Coke(R), tea and coffee, totaling 12 experimental groups. Specimens (10 mm X 2 mm) were immersed in each respective Solution for 5 min, three times a day, during 60 days and stored in artificial saliva at 37 degrees C +/- 1 degrees C between immersion periods. Topography and chemical analysis was qualitative. Findings: Groups immersed in artificial saliva, showed homogeneous degradation of matrix and deposition of calcium at the material surface. Regarding coffee, there was a reasonable chemical degradation with loss of load particles and deposition of ions. For tea, superficial degradation occurred in specific areas with deposition of calcium, carbon. potassium and phosphorus. For Coke(R), excessive matrix degradation and loss of load particles with deposition of calcium, sodium, and potassium. Conclusion: Light curing units did not influence the superficial morphology of composite resin tested, but the immersion beverages did. Coke(R) affected material`s surface more than did the other tested drinks. Microsc. Res. Tech. 73:176-181, 2010. (c) 2009 Wiley-Liss Inc.
Resumo:
The objective of this study was to apply response surface methodology to estimate the emulsifying capacity and stability of mixtures containing isolated and textured soybean proteins combined with pectin and to evaluate if the extrusion process affects these interfacial properties. A simplex-centroid design was applied to the model emulsifying activity index (EAI), average droplet size (D-[4.3]) and creaming inhibition (Cl%) of the mixtures. All models were significant and able to explain more than 86% of the variation. The high predictive capacity of the models was also confirmed. The mean values for EAI, D-[4.3] and Cl% observed in all assays were 0.173 +/- 0.015 mn, 19.2 +/- 1.0 mu m and 53.3 +/- 2.6%, respectively. No synergism was observed between the three compounds. This result can be attributed to the low soybean protein solubility at pH 6.2 (<35%). Pectin was the most important variable for improving all responses. The emulsifying capacity of the mixture increased 41% after extrusion. Our results showed that pectin could substitute or improve the emulsifying properties of the soybean proteins and that the extrusion brings additional advantage to interfacial properties of this combination. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
There is an increasing interest in lipid nanoparticles because of their suitability for several administration routes. Thus, it becomes even more relevant the physicochemical characterization of lipid materials with respect to their polymorphism, lipid miscibility and stability, as well as the assessment of the effect of surfactant on the type and structure of these nanoparticles. This work focuses on the physicochemical characterization of lipid matrices composed of pure stearic acid or of mixtures of stearic acid-capric/caprylic triglycerides, for drug delivery. The lipids were analyzed by Differential Scanning Calorimetry (DSC), Wide Angle X-ray Diffraction (WAXD), Polarized Light Microscopy (PLM) and hydrophilic-lipophilic balance (HLB) in combination with selected surfactants to determine the best solid-to-liquid ratio. Based on the results obtained by DSC and WAXD, the selected qualitative and quantitative composition contributed for the production of stable nanoparticles, since the melting and the tempering processes provided important information on the thermodynamic stability of solid lipid matrices. The best HLB value obtained for stearic acid-capric/caprylic triglycerides was 13.8, achieved after combining these lipids with accepted surfactants (trioleate sorbitan and polysorbate 80 in the ratio of 10:90). The proposed combinations were shown useful to obtain a stable emulsion to be used as intermediate form for the production of lipid nanoparticles. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This study analyzed the relationship between environmental factors, especially air pollution and climatic conditions, and non-structural carbohydrates (NSC) in plants of Lolium multiflorum exposed during 10 consecutive periods of 28 days at a polluted site (Congonhas) and at a reference site in Sao Paulo city (Brazil). After exposure, NSC composition and leaf concentrations of Al, Fe. Cu, Zn, Pb and Cd were measured. The seasonal pattern of NSC accumulation was quite similar in both sites, but plants at Congonhas showed higher concentrations of these compounds, especially fructans of low and medium degree of polymerization. Regression analysis showed that NSC in plants growing at the polluted site were explained by variations on temperature and leaf concentration of Fe (positive effect), as well as relative humidity and particulate material (negative effect). NSC in the standardized grass culture, in addition to heavy metal accumulation, may indicate stressing conditions in a sub-tropical polluted environment. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Objective: this study aimed to develop a nondecalcified bone sample processing technique enabling immunohistochemical labeling of proteins by kappa-beta nuclear factor (NF-kB) utilizing the Technovit 7200 VCR (R) in adult male Wistar rats. Study Method: A 1.8 mm diameter defect was performed 0.5mm from the femur proximal joint by means of a round bur. Experimental groups were divided according to fixing solution prior to histologic processing: Group 1- ethanol 70%; Group 2-10% buffered formalin; and Group 3- Glycerol diluted in 70% ethanol at a 70/30 ratio + 10% buffered formalin. The post-surgical periods ranged from 01 to 24 hours. Control groups included a nonsurgical procedure group (NSPG) and surgical procedures where bone exposure was performed (SPBE) without drilling. Prostate carcinoma was the positive control (PC) and samples subjected to incomplete immunohistochemistry protocol were the negative control (NC). Following euthanization, all samples were kept at 4 degrees C for 7 days, and were dehydrated in a series of alcohols at -20 degrees C. The polymer embedding procedure was performed at ethanol/polymer ratios of 70%-30%, 50%-50%, 30%-70%, 100%, and 100% for 72 hours at -20 degrees C. Polymerization followed the manufacturer`s recommendation. The samples were grounded and polished to 10-15 mu m thickness, and were deacrylated. The sections were rehydrated and were submitted to the primary polyclonal antibody anti-NF-kB on a 1:75 dilution for 12 hours at room temperature. Results: Microscopy showed that the Group 2 presented positive reaction to NF-kB, diffuse reactions for NSPG and SPBE, and no reaction for the NC group. Conclusion: The results obtained support the feasibility of the developed immunohistochemistry technique.