970 resultados para Electronics--Spectra.
Resumo:
Based on high-resolution spectra obtained with the MIKE spectrograph on the Magellan telescopes, we present detailed elemental abundances for 20 red giant stars in the outer Galactic disk, located at Galactocentric distances between 9 and 13 kpc. The outer disk sample is complemented with samples of red giants from the inner Galactic disk and the solar neighborhood, analyzed using identical methods. For Galactocentric distances beyond 10 kpc, we only find chemical patterns associated with the local thin disk, even for stars far above the Galactic plane. Our results show that the relative densities of the thick and thin disks are dramatically different from the solar neighborhood, and we therefore suggest that the radial scale length of the thick disk is much shorter than that of the thin disk. We make a first estimate of the thick disk scale length of L(thick) = 2.0 kpc, assuming L(thin) = 3.8 kpc for the thin disk. We suggest that radial migration may explain the lack of radial age, metallicity, and abundance gradients in the thick disk, possibly also explaining the link between the thick disk and the metal-poor bulge.
Resumo:
Aims. We present lithium abundance determination for a sample of K giant stars in the Galactic bulge. The stars presented here are the only 13 stars with a detectable lithium line (6767.18 angstrom) among similar to 400 stars for which we have spectra in this wavelength range, half of them in Baade's Window (b = -4 degrees) and half in a field at b = -6 degrees. Methods. The stars were observed with the GIRAFFE spectrograph of FLAMES mounted on VLT, with a spectral resolution of R similar to 20 000. Abundances were derived from spectral synthesis and the results are compared with those of stars with similar parameters, but no detectable Li line. Results. We find 13 stars with a detectable Li line, among which 2 have abundances A(Li) > 2.7. No clear correlations were found between the Li abundance and those of other elements. With the exception of the two most Li rich stars, the others follow a fairly tight A(Li) - T(eff) correlation. Conclusions. There is strong indication of a Li production phase during the red giant branch (RGB), acting either on a very short timescale, or selectively only in some stars. That the proposed Li production phase is associated with the RGB bump cannot be excluded, although our targets are significantly brighter than the predicted RGB bump magnitude for a population at 8 kpc.
Resumo:
Context. NGC 6522 has been the first metal-poor globular cluster identified in the bulge by Baade. Despite its importance, very few high-resolution abundance analyses of stars in this cluster are available. The bulge metal-poor clusters may be important tracers of the early chemical enrichment of the Galaxy. Aims. The main purpose of this study is to determine metallicity and elemental ratios in individual stars of NGC 6522. Methods. High-resolution spectra of 8 giants of the bulge's globular cluster NGC 6522 were obtained at the 8m VLT UT2-Kueyen telescope with the FLAMES+GIRAFFE spectrograph. Multiband V, I, J, K(s) photometry was used to derive effective temperatures as reference values. Spectroscopic parameters were derived from Fe I and Fe II lines, and adopted for the derivation of abundance ratios. Results. The present analysis provides a metallicity [Fe/H] = -1.0 +/- 0.2. The alpha-elements oxygen, magnesium and silicon show [O/Fe] = +0.4 +/- 0.3, [Mg/Fe] = [Si/Fe] = +0.25 +/- 0.15, whereas calcium and titanium show shallower ratios of [Ca/Fe] = [Ti/Fe] = +0.15 +/- 0.15. The neutron-capture r-process element europium appears to be overabundant by [Eu/Fe] = +0.4 +/- 0.4. The neutron-capture s-elements lanthanum and barium are enhanced by [La/Fe] = +0.35 +/- 0.2 and [Ba/Fe] = +0.5 +/- 0.5. The large internal errors, indicating the large star-to-star variation in the barium and europium abundances, are also discussed. Conclusions. The moderate metallicity combined to a blue horizontal branch (BHB), are characteristics similar to those of HP 1 and NGC 6558, pointing to a population of very old globular clusters in the Galactic bulge. Also, the abundance ratios in NGC 6522 resemble those in HP 1 and NGC 6558. The ultimate conclusion is that the bulge is old, and went through an early prompt chemical enrichment.
Resumo:
Context. Tight binaries discovered in young, nearby associations are ideal targets for providing dynamical mass measurements to test the physics of evolutionary models at young ages and very low masses. Aims. We report the binarity of TWA22 for the first time. We aim at monitoring the orbit of this young and tight system to determine its total dynamical mass using an accurate distance determination. We also intend to characterize the physical properties (luminosity, effective temperature, and surface gravity) of each component based on near-infrared photometric and spectroscopic observations. Methods. We used the adaptive-optics assisted imager NACO to resolve the components, to monitor the complete orbit and to obtain the relative near-infrared photometry of TWA22 AB. The adaptive-optics assisted integral field spectrometer SINFONI was also used to obtain medium-resolution (R(lambda) = 1500-2000) spectra in JHK bands. Comparison with empirical and synthetic librairies were necessary for deriving the spectral type, the effective temperature, and the surface gravity for each component of the system. Results. Based on an accurate trigonometric distance (17.5 +/- 0.2 pc) determination, we infer a total dynamical mass of 220 +/- 21 M(Jup) for the system. From the complete set of spectra, we find an effective temperature T(eff) = 2900(-200)(+200) K for TWA22A and T(eff) = 2900(-100)(+200) for TWA22 B and surface gravities between 4.0 and 5.5 dex. From our photometry and an M6 +/- 1 spectral type for both components, we find luminosities of log(L/L(circle dot)) = -2.11 +/- 0.13 dex and log(L/L(circle dot)) = -2.30 +/- 0.16 dex for TWA22 A and B, respectively. By comparing these parameters with evolutionary models, we question the age and the multiplicity of this system. We also discuss a possible underestimation of the mass predicted by evolutionary models for young stars close to the substellar boundary.
Resumo:
Context. There is growing evidence that a treatment of binarity amongst OB stars is essential for a full theory of stellar evolution. However the binary properties of massive stars - frequency, mass ratio & orbital separation - are still poorly constrained. Aims. In order to address this shortcoming we have undertaken a multiepoch spectroscopic study of the stellar population of the young massive cluster Westerlund 1. In this paper we present an investigation into the nature of the dusty Wolf-Rayet star and candidate binary W239. Methods. To accomplish this we have utilised our spectroscopic data in conjunction with multi-year optical and near-IR photometric observations in order to search for binary signatures. Comparison of these data to synthetic non-LTE model atmosphere spectra were used to derive the fundamental properties of the WC9 primary. Results. We found W239 to have an orbital period of only similar to 5.05 days, making it one of the most compact WC binaries yet identified. Analysis of the long term near-IR lightcurve reveals a significant flare between 2004-6. We interpret this as evidence for a third massive stellar component in the system in a long period (> 6 yr), eccentric orbit, with dust production occuring at periastron leading to the flare. The presence of a near-IR excess characteristic of hot (similar to 1300 K) dust at every epoch is consistent with the expectation that the subset of persistent dust forming WC stars are short (< 1 yr) period binaries, although confirmation will require further observations. Non-LTE model atmosphere analysis of the spectrum reveals the physical properties of the WC9 component to be fully consistent with other Galactic examples. Conclusions. The simultaneous presence of both short period Wolf-Rayet binaries and cool hypergiants within Wd 1 provides compelling evidence for a bifurcation in the post-Main Sequence evolution of massive stars due to binarity. Short period O+OB binaries will evolve directly to the Wolf-Rayet phase, either due to an episode of binary mediated mass loss - likely via case A mass transfer or a contact configuration - or via chemically homogenous evolution. Conversely, long period binaries and single stars will instead undergo a red loop across the HR diagram via a cool hypergiant phase. Future analysis of the full spectroscopic dataset for Wd 1 will constrain the proportion of massive stars experiencing each pathway; hence quantifying the importance of binarity in massive stellar evolution up to and beyond supernova and the resultant production of relativistic remnants.
Resumo:
Context. The presence of pulsations in late-type Be stars is still a matter of controversy. It constitutes an important issue to establish the relationship between non-radial pulsations and the mass-loss mechanism in Be stars. Aims. To contribute to this discussion, we analyse the photometric time series of the B8IVe star HD 50 209 observed by the CoRoT mission in the seismology field. Methods. We use standard Fourier techniques and linear and non-linear least squares fitting methods to analyse the CoRoT light curve. In addition, we applied detailed modelling of high-resolution spectra to obtain the fundamental physical parameters of the star. Results. We have found four frequencies which correspond to gravity modes with azimuthal order m = 0,-1,-2,-3 with the same pulsational frequency in the co-rotating frame. We also found a rotational period with a frequency of 0.679 cd(-1) (7.754 mu Hz). Conclusions. HD 50 209 is a pulsating Be star as expected from its position in the HR diagram, close to the SPB instability strip.
Resumo:
Aims. We report the discovery of very shallow (Delta F/F approximate to 3.4 x 10(-4)), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as caused by a transiting companion. We describe the 3-colour CoRoT data and complementary ground-based observations that support the planetary nature of the companion. Methods. We used CoRoT colours information, good angular resolution ground-based photometric observations in- and out- of transit, adaptive optics imaging, near-infrared spectroscopy, and preliminary results from radial velocity measurements, to test the diluted eclipsing binary scenarios. The parameters of the host star were derived from optical spectra, which were then combined with the CoRoT light curve to derive parameters of the companion. Results. We examined all conceivable cases of false positives carefully, and all the tests support the planetary hypothesis. Blends with separation >0.40 '' or triple systems are almost excluded with a 8 x 10(-4) risk left. We conclude that, inasmuch we have been exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which we derive a period of 0.853 59 +/- 3 x 10(-5) day and a radius of R(p) = 1.68 +/- 0.09 R(Earth). Analysis of preliminary radial velocity data yields an upper limit of 21 M(Earth) for the companion mass, supporting the finding. Conclusions. CoRoT-7b is very likely the first Super-Earth with a measured radius. This object illustrates what will probably become a common situation with missions such as Kepler, namely the need to establish the planetary origin of transits in the absence of a firm radial velocity detection and mass measurement. The composition of CoRoT-7b remains loosely constrained without a precise mass. A very high surface temperature on its irradiated face, approximate to 1800-2600 K at the substellar point, and a very low one, approximate to 50 K, on its dark face assuming no atmosphere, have been derived.
Resumo:
The relatively large number of nearby radio-quiet and thermally emitting isolated neutron stars (INSs) discovered in the ROSAT All-Sky Survey, dubbed the ""Magnificent Seven"", suggests that they belong to a formerly neglected major component of the overall INS population. So far, attempts to discover similar INSs beyond the solar vicinity failed to confirm any reliable candidate. The good positional accuracy and soft X-ray sensitivity of the EPIC cameras onboard the XMM-Newton satellite allow us to efficiently search for new thermally emitting INSs. We used the 2XMMp catalogue to select sources with no catalogued candidate counterparts and with X-ray spectra similar to those of the Magnificent Seven, but seen at greater distances and thus undergoing higher interstellar absorptions. Identifications in more than 170 astronomical catalogues and visual screening allowed us to select fewer than 30 good INS candidates. In order to rule out alternative identifications, we obtained deep ESO-VLT and SOAR optical imaging for the X-ray brightest candidates. We report here on the optical follow-up results of our search and discuss the possible nature of 8 of our candidates. A high X-ray-to-optical flux ratio together with a stable flux and soft X-ray spectrum make the brightest source of our sample, 2XMM J104608.7-594306, a newly discovered thermally emitting INS. The X-ray source 2XMM J010642.3+005032 has no evident optical counterpart and should be further investigated. The remaining X-ray sources are most probably identified with cataclysmic variables and active galactic nuclei, as inferred from the colours and flux ratios of their likely optical counterparts. Beyond the finding of new thermally emitting INSs, our study aims at constraining the space density of this Galactic population at great distances and at determining whether their apparently high density is a local anomaly or not.
Resumo:
We report on the discovery of a hot Jupiter-type exoplanet, CoRoT-17b, detected by the CoRoT satellite. It has a mass of 2.43 +/- 0.30 M(Jup) and a radius of 1.02 +/- 0.07 R(Jup), while its mean density is 2.82 +/- 0.38 g/cm(3). CoRoT-17b is in a circular orbit with a period of 3.7681 +/- 0.0003 days. The host star is an old (10.7 +/- 1.0 Gyr) main-sequence star, which makes it an intriguing object for planetary evolution studies. The planet's internal composition is not well constrained and can range from pure H/He to one that can contain similar to 380 earth masses of heavier elements.
Resumo:
Context. Emission lines formed in decretion disks of Be stars often undergo long-term cyclic variations, especially in the violet-to-red (V/R) ratio of their primary components. The underlying structural and dynamical variations of the disks are only partly understood. From observations of the bright Be-shell star. Tau, the possibly broadest and longest data set illustrating the prototype of this behaviour was compiled from our own and archival observations. It comprises optical and infrared spectra, broad-band polarimetry, and interferometric observations. Aims. The dense, long-time monitoring permits a better separation of repetitive and ephemeral variations. The broad wavelength coverage includes lines formed under different physical conditions, i.e. different locations in the disk, so that the dynamics can be probed throughout much of the disk. Polarimetry and interferometry constrain the spatial structure. All together, the objective is a better understand the dynamics and life cycle of decretion disks. Methods. Standard methods of data acquisition, reduction, and analysis were applied. Results. From 3 V/R cycles between 1997 and 2008, a mean cycle length in Ha of 1400-1430 days was derived. After each minimum in V/R, the shell absorption weakens and splits into two components, leading to 3 emission peaks. This phase may make the strongest contribution to the variability in cycle length. There is no obvious connection between the V/R cycle and the 133-day orbital period of the not otherwise detected companion. V/R curves of different lines are shifted in phase. Lines formed on average closer to the central star are ahead of the others. The shell absorption lines fall into 2 categories differing in line width, ionization/excitation potential, and variability of the equivalent width. They seem to form in separate regions of the disk, probably crossing the line of sight at different times. The interferometry has resolved the continuum and the line emission in Br gamma and HeI 2.06. The phasing of the Br gamma emission shows that the photocenter of the line-emitting region lies within the plane of the disk but is offset from the continuum source. The plane of the disk is constant throughout the observed V/R cycles. The observations lay the foundation for the fully self-consistent, one-armed, disk-oscillation model developed in Paper II.
Resumo:
An optical photometric and spectroscopic analysis of the slowly-evolving type IIn SN 2007rt is presented, covering a duration of 481 days after discovery. Its earliest spectrum, taken approximately 100 days after the explosion epoch, indicates the presence of a dense circumstellar medium, with which the supernova ejecta is interacting. This is supported by the slowly-evolving light curve. A notable feature in the spectrum of SN 2007rt is the presence of a broad He I 5875 line, not usually detected in type IIn supernovae. This may imply that the progenitor star has a high He/H ratio, having shed a significant portion of its hydrogen shell via mass-loss. An intermediate resolution spectrum reveals a narrow H(alpha) P-Cygni profile, the absorption component of which has a width of 128 km s (1). This slow velocity suggests that the progenitor of SN 2007rt recently underwent mass-loss with wind speeds comparable to the lower limits of those detected in luminous blue variables. Asymmetries in the line profiles of H and He at early phases bears some resemblance to double-peaked features observed in a number of Ib/c spectra. These asymmetries may be indicative of an asymmetric or bipolar outflow or alternatively dust formation in the fast expanding ejecta. In addition, the late time spectrum, at over 240 days post-explosion, shows clear evidence for the presence of newly formed dust.
Resumo:
We develop an automated spectral synthesis technique for the estimation of metallicities ([Fe/H]) and carbon abundances ([C/Fe]) for metal-poor stars, including carbon-enhanced metal-poor stars, for which other methods may prove insufficient. This technique, autoMOOG, is designed to operate on relatively strong features visible in even low- to medium-resolution spectra, yielding results comparable to much more telescope-intensive high-resolution studies. We validate this method by comparison with 913 stars which have existing high-resolution and low- to medium-resolution to medium-resolution spectra, and that cover a wide range of stellar parameters. We find that at low metallicities ([Fe/H] less than or similar to -2.0), we successfully recover both the metallicity and carbon abundance, where possible, with an accuracy of similar to 0.20 dex. At higher metallicities, due to issues of continuum placement in spectral normalization done prior to the running of autoMOOG, a general underestimate of the overall metallicity of a star is seen, although the carbon abundance is still successfully recovered. As a result, this method is only recommended for use on samples of stars of known sufficiently low metallicity. For these low- metallicity stars, however, autoMOOG performs much more consistently and quickly than similar, existing techniques, which should allow for analyses of large samples of metal-poor stars in the near future. Steps to improve and correct the continuum placement difficulties are being pursued.
Resumo:
Context. The detailed chemical abundances of extremely metal-poor (EMP) stars are key guides to understanding the early chemical evolution of the Galaxy. Most existing data, however, treat giant stars that may have experienced internal mixing later. Aims. We aim to compare the results for giants with new, accurate abundances for all observable elements in 18 EMP turno. stars. Methods. VLT/UVES spectra at R similar to 45 000 and S/N similar to 130 per pixel (lambda lambda 330-1000 nm) are analysed with OSMARCS model atmospheres and the TURBOSPECTRUM code to derive abundances for C, Mg, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, and Ba. Results. For Ca, Ni, Sr, and Ba, we find excellent consistency with our earlier sample of EMP giants, at all metallicities. However, our abundances of C, Sc, Ti, Cr, Mn and Co are similar to 0.2 dex larger than in giants of similar metallicity. Mg and Si abundances are similar to 0.2 dex lower (the giant [Mg/Fe] values are slightly revised), while Zn is again similar to 0.4 dex higher than in giants of similar [Fe/H] (6 stars only). Conclusions. For C, the dwarf/giant discrepancy could possibly have an astrophysical cause, but for the other elements it must arise from shortcomings in the analysis. Approximate computations of granulation (3D) effects yield smaller corrections for giants than for dwarfs, but suggest that this is an unlikely explanation, except perhaps for C, Cr, and Mn. NLTE computations for Na and Al provide consistent abundances between dwarfs and giants, unlike the LTE results, and would be highly desirable for the other discrepant elements as well. Meanwhile, we recommend using the giant abundances as reference data for Galactic chemical evolution models.
Resumo:
We present a new set of oscillator strengths for 142 Fe II lines in the wavelength range 4000-8000 angstrom. Our gf-values are both accurate and precise, because each multiplet was globally normalized using laboratory data ( accuracy), while the relative gf-values of individual lines within a given multiplet were obtained from theoretical calculations ( precision). Our line list was tested with the Sun and high-resolution (R approximate to 10(5)), high-S/N (approximate to 700-900) Keck+HIRES spectra of the metal-poor stars HD 148816 and HD 140283, for which line-to-line scatter (sigma) in the iron abundances from Fe II lines as low as 0.03, 0.04, and 0.05 dex are found, respectively. For these three stars the standard error in the mean iron abundance from Fe II lines is negligible (sigma(mean) <= 0.01 dex). The mean solar iron abundance obtained using our gf-values and different model atmospheres is A(Fe) = 7.45(sigma = 0.02).
Resumo:
Context. The formation and evolution of the Galactic bulge and its relationship with the other Galactic populations is still poorly understood. Aims. To establish the chemical differences and similarities between the bulge and other stellar populations, we performed an elemental abundance analysis of alpha- (O, Mg, Si, Ca, and Ti) and Z-odd (Na and Al) elements of red giant stars in the bulge as well as of local thin disk, thick disk and halo giants. Methods. We use high-resolution optical spectra of 25 bulge giants in Baade's window and 55 comparison giants (4 halo, 29 thin disk and 22 thick disk giants) in the solar neighborhood. All stars have similar stellar parameters but cover a broad range in metallicity (-1.5 < [Fe/H] < +0.5). A standard 1D local thermodynamic equilibrium analysis using both Kurucz and MARCS models yielded the abundances of O, Na, Mg, Al, Si, Ca, Ti and Fe. Our homogeneous and differential analysis of the Galactic stellar populations ensured that systematic errors were minimized. Results. We confirm the well-established differences for [alpha/Fe] at a given metallicity between the local thin and thick disks. For all the elements investigated, we find no chemical distinction between the bulge and the local thick disk, in agreement with our previous study of C, N and O but in contrast to other groups relying on literature values for nearby disk dwarf stars. For -1.5 < [Fe/H] < -0.3 exactly the same trend is followed by both the bulge and thick disk stars, with a star-to-star scatter of only 0.03 dex. Furthermore, both populations share the location of the knee in the [alpha/Fe] vs. [Fe/H] diagram. It still remains to be confirmed that the local thick disk extends to super-solar metallicities as is the case for the bulge. These are the most stringent constraints to date on the chemical similarity of these stellar populations. Conclusions. Our findings suggest that the bulge and local thick disk stars experienced similar formation timescales, star formation rates and initial mass functions, confirming thus the main outcomes of our previous homogeneous analysis of [O/Fe] from infrared spectra for nearly the same sample. The identical a-enhancements of thick disk and bulge stars may reflect a rapid chemical evolution taking place before the bulge and thick disk structures we see today were formed, or it may reflect Galactic orbital migration of inner disk/bulge stars resulting in stars in the solar neighborhood with thick-disk kinematics.