975 resultados para Electrical resistivity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grain boundaries (GBs) are undesired in large area layered 2D materials as they degrade the device quality and their electronic performance. Here we show that the grain boundaries in graphene which induce additional scattering of carriers in the conduction channel also act as an additional and strong source of electrical noise especially at the room temperature. From graphene field effect transistors consisting of single GB, we find that the electrical noise across the graphene GBs can be nearly 10 000 times larger than the noise from equivalent dimensions in single crystalline graphene. At high carrier densities (n), the noise magnitude across the GBs decreases as proportional to 1/n, suggesting Hooge-type mobility fluctuations, whereas at low n close to the Dirac point, the noise magnitude could be quantitatively described by the fluctuations in the number of propagating modes across the GB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inverse coupled dependence of electrical conductivity and thermopower on carrier concentration presents a big challenge in achieving a high figure of merit. However, the simultaneous enhancement of electrical conductivity and thermopower can be realized in practice by carefully engineering the electronic band structure. Here by taking the example of Bi2S3, we report a simultaneous increase in both electrical conductivity and thermopower under hydrostatic pressure. Application of hydrostatic pressure enables tuning of electronic structure in such a way that the conductivity effective mass decreases and the density of states effective mass increases. This dependence of effective masses leads to simultaneous enhancement in electrical conductivity and thermopower under n-type doping leading to a huge improvement in the power factor. Also lattice thermal conductivity exhibits very weak pressure dependence in the low pressure range. The large power factor together with low lattice thermal conductivity results in a high ZT value of 1.1 under n-type doping, which is nearly two times higher than the previously reported value. Hence, this pressure-tuned behaviour can enable the development of efficient thermoelectric devices in the moderate to high temperature range. We further demonstrate that similar enhancement can be observed by generating chemical pressure by doping Bi2S3 with smaller iso-electronic elements such as Sb at Bi sites, which can be achieved experimentally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electromagnetic interference shielding (EMI) materials were designed using PC (polycarbonate)/SAN poly(styrene-co-acrylonitrile)] blends containing few-layered graphene nanosheets decorated with nickel nanoparticles (G-Ni). The graphene nanosheets were decorated with nickel nanoparticles via the uniform nucleation of the metal salt precursor on graphene sheets as the substrate. In order to localize the nanoparticles in the PC phase of the PC/SAN blends, a two-step mixing protocol was adopted. In the first step, graphene sheets were mixed with PC in solution and casted into a film, followed by dilution of these PC master batch films with SAN in the subsequent melt extrusion step. The dynamic mechanical properties, ac electrical conductivity, EMI shielding effectiveness and thermal conductivity of the composites were evaluated. The G-Ni nanoparticles significantly improved the electrical and thermal conductivity in the blends. In addition, a total shielding effectiveness (SET) of -29.4 dB at 18 GHz was achieved with G-Ni nanoparticles. Moreover, the blends with G-Ni exhibited an impressive 276% higher thermal conductivity and 29.2% higher elastic modulus with respect to the neat blends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical conductivity and dielectric relaxation studies on SO4 (2-) doped modified molybdo-phosphate glasses have been carried out over a wide range of composition, temperature and frequency. The d.c. conductivities which have been measured by both digital electrometer (four-probe method) and impedance analyser are comparable. The relaxation phenomenon has been rationalized using electrical modulus formalism. The use of modulus representation in dielectric relaxation studies has inherent advantages viz., experimental errors arising from the contributions of electrode-electrolyte interface capacitances are minimized. The relaxation observed in the present study is non-Debye type. The activation energies for relaxation were determined using imaginary parts of electrical modulus peaks which were close to those of the d.c. conductivity implying the involvement of similar energy barriers in both the processes. The enhanced conductivity in these glasses can be attributed to the migration of Na+, in expanded structures due to the introduction of SO4 (2-) ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vanadium Oxide has been a frontrunner in the field of oxide electronics because of its metal-insulator transition (MIT). The interplay of different structures of VO2 has played a crucial role in deciding the magnitude of the first order MIT. Substitution doping has been found to introduce different polymorphs of VO2. Hence the role of substitution doping in stabilizing the competing phases of VO2 in the thin film form remains underexplored. Consequently there have been reports both discounting and approving such a stabilization of competing phases in VO2. It is reported in the literature that the bandwidth of the hysteresis and transition temperature of VO2 can be tuned by substitutional doping of VO2 with W. In this work, we have adopted a novel technique called, Ultrasonic Nebulized Spray Pyrolysis of Aqueous Combustion Mixture (UNSPACM) to deposit VO2 and W- doped VO2 as thin films. XRD and Raman spectroscopy were used to investigate the role of tungsten on the structure of VO2 thin films. Morphology of the thin films was found to be consisting of globular and porous nanoparticles of size similar to 20nm. Transition temperature decreased with the addition of W. We found that for 2.0 at % W doping in VO2, the transition temperature has reduced from 68 degrees C to 25 degrees C. It is noted that W-doping in the process of reducing the transition temperature, alters the local structure and also increases room temperature carrier concentration. (c) 2016 Author(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Electrical Resistance Tomography (ERT) technique possesses great potential in monitoring widely exiting industrial two/multi-phase flow. For vertical pipe flow and inclined pipe flow, some application studies with exciting results have been reported, but there is rarely a paper regarding the application of ERT to horizontal gas/liquid pipe flow. This paper addresses this issue and proposes a smart method, Liquid Level Detection method, to conventional ERT system. The enhanced ERT system using the new method can monitor horizontal pipe flow effectively and its application is no longer restricted by the flow conditions. Some experimental results from monitoring an air/water slug pipe flow are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characterization of air-water two-phase vertical flow in a 12 m flow loop with 1.5 m of vertical section is studied by using electrical resistance tomography (ERT). By applying a fast data collection to a dual-plane ERT sensor and an iterative image reconstruction algorithm, relevant information is gathered for implementation of flow characteristics, particularly for flow regime recognition. A cross-correlation method is also used to interpret the velocity distribution of the gas phase on the cross section. The paper demonstrates that ERT can now be deployed routinely for velocity measurements and this capability will increase as faster measurement systems evolve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vibration analysis of an adhered S-shaped microbeam under alternating sinusoidal voltage is presented. The shaking force is the electrical force due to the sinusoidal voltage. During vibration, both the microbeam deflection and the adhesion length keep changing. The microbeam deflection and adhesion length are numerically determined by the iteration method. As the adhesion length keeps changing, the domain of the equation of motion for the microbeam (unadhered part) changes correspondingly, which results in changes of the structure natural frequencies. For this reason, the system can never reach a steady state. The transient behaviors of the microbeam under different shaking frequencies are compared. We deliberately choose the initial conditions to compare our dynamic results with the existing static theory. The paper also analyzes the changing behavior of adhesion length during vibration and an asymmetric pattern of adhesion length change is revealed, which may be used to guide the dynamic de-adhering process. The abnormal behavior of the adhered microbeam vibrating at almost the same frequency under two quite different shaking frequencies is also shown. The Galerkin method is used to discretize the equation of motion and its convergence study is also presented. The model is only applicable in the case that the peel number is equal to 1. Some other model limitations are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macro-steatosis in deceased donor livers is increasingly prevalent and is associated with poor or non-function of the liver upon reperfusion. Current assessment of the extent of steatosis depends upon the macroscopic assessment of the liver by the surgeon and histological examination, if available. In this paper we demonstrate electrical and optical spectroscopy techniques which quantitatively characterize fatty infiltration in liver tissue. Optical spectroscopy showed a correlation coefficient of 0.85 in humans when referenced to clinical hematoxylin and eosin (H&E) sections in 20 human samples. With further development, an optical probe may provide a comprehensive measure of steatosis across the liver at the time of procurement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper extends the air-gap element (AGE) to enable the modeling of flat air gaps. AGE is a macroelement originally proposed by Abdel-Razek et al.for modeling annular air gaps in electrical machines. The paper presents the theory of the new macroelement and explains its implementation within a time-stepped finite-element (FE) code. It validates the solution produced by the new macroelement by comparing it with that obtained by using an FE mesh with a discretized air gap. It then applies the model to determine the open-circuit electromotive force of an axial-flux permanent-magnet machine and compares the results with measurements.