989 resultados para Efeitos da radiação
Resumo:
The cerebral cortex of mammals is histologically organized into different layers of excitatory neurons that have distinct patterns of connections with cortical or subcortical targets. During development, these cortical layers are established through an intricate combination of neuronal specification and migration in a radial pattern known as "insideout": deep-layer neurons are generated prior to upper-layer neurons. In the last few decades, several genes encoding transcription factors involved in the sequential specification of neurons destined to different cortical layers have been identified. However, the influence of early-generated neurons in the specification of subsequent neuronal cohorts remains unclear. To investigate this possible influence, we induced the selective death of cortical neurons from layer V and VI before the generation of layer II, III and IV neurons. Thus, we can evaluate the effects of ablation of early born neurons on the phenotype of late born neurons. Our data shows that one-day after ablation, layer VI neurons expressing the transcription factor TBR1 are newly generated while virtually no neuron expressing TBR1 was generated in the same age in control animals. This suggests that progenitors involved in the generation of neurons destined for superficial layers suffer interference from the selective death of neurons in deep layers, changing their specification. We also observed that while TBR1-positive neurons are located exclusively in deep cortical layers of control animals, many TBR1-positive neurons are misplaced in superficial layers of ablated animals, suggesting that the migration of cortical neurons could be controlled independently of neuronal phenotypes. Furthermore, we observed an increase in layer V neurons expressing CTIP2 and neurons expressing SATB2 and that these cells have changed their distributions. As a conclusion, our data indicate the existence of a mechanism of control exercised by the early-generated neurons in the cerebral cortex on the fate of the progenitors involved in the generation of the following cortical neurons. This mechanism could help to control the number of neurons in different layers and contribute to the establishment of different cortical areas
Resumo:
The cortical development requires a precise process of proliferation, migration, survival and differentiation of newly formed neurons to finally achieve the development of a functional network. Different kinases, such as PKA, CaMKII, MAPK and PI3K, phosphorylate the transcription factors CREB, and thus activate it, inducing CREB-dependent gene expression. In order to identify the involvement of such signaling pathways mediated by CREB over neuronal differentiation and survival, in vitro experiments of cell culture were conducted using pharmacological kinase inhibitors and genetic techniques to express different forms of CREB (A-CREB and CREB-FY) in cortical neurons. Inhibition of PKA and CaMKII decreased the length of neuronal processes (neurites); whereas inhibition of MAPK did not affect the length, but increased the number of neurites. Blockade of PI3K do not appear to alter neuronal morphology, nor the soma size changed with the kinase blockades. CREB activation (CREB-FY) along with MAPK and PI3K blockades presented a negative side effect over neuritic growth and the expression of A-CREB leaded to a significant decrease in neuronal survival after 60h in vitro and mimicked some of the effects on neuronal morphology observed with PKA and CaMKII blockade. In summary the signaling through CREB influences the morphology of cortical neurons, particularly when phosphorylated by PKA, and CREB signaling is also important for survival of immature neurons prior to the establishment of fully functional synaptic contacts. Our data contribute to understanding the role of CREB signaling, activated by different routes, on survival and neuronal differentiation and may be valuable in the development of regenerative strategies in different neurological diseases
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The contents introduction concerning the individual health cares reveals important since the school education. In this direction, the present study objectified to know an effect of Oral Health education intervention in the oral hygiene and in the schools children information level, of 4º e 5º basic education years. The study was composed by two groups, chosen of random form: control group (n = 115) and experimental group (n = 132), with 247 public net school children in total sample. The experimental group participated of some educative activities in Oral Health, with biweekly frequency, during the 4 months period, given for a surgeon-dentistry. Both the groups were submitted to a clinical examination for a previous verification of the Plaque Index (PI) and of Loe Silness Gingival Index (GI). A questionnaire with closed questions on Oral Health was applied before and after to verify the school children rightness index. After the intervention, the final data, represented for the PI, GI and Rightness Index verification, has been collected for statistical analyses through the chi-square test to a 95 % of reliable level, using the SPSS 10,0 software. The PI and GI were categorized in high and low on the initials index basis medium; already the Rightness Index was categorized in inadequate (< 50%) and adequate (≥ 50%). It was verified that the PI (p = 0,014; IC 0.24-0.86) and the GI (p = 0,013; IC 0,28-0,84) presented differences statistically significant, after the education activities, when compared to with the control, favoring the experimental group. It was verified too the experimental group got greater rightness index, presenting difference highly significant (p<0,0001; IC 3,73-26,81). It was still observed that there was no association between the oral hygiene indicators and the school children information level. Ahead the results, it can been concluded that education activities related in the school routine were capable to give positives effects in the oral hygiene control and in the information level about Oral Health, however, not necessarily, the individual with bigger information is that one who has practiced an oral hygiene more adjusted. One become necessary, however, that the education in Oral Health occurs of permanent and integrated form with others school actors, for the positive effect does not lose the student s life longterm
Resumo:
Oral squamous cell carcinoma (OSCC) is the most prevalent malignancy in the oral cavity and reach a large number of individuals, has become an important public health problem. Studies have demonstrated changes in pathway components BMP in various types of cancers as prostate, colon, breast, gastric and OSCCs. Is the current knowledge that these proteins may exert pro-tumor effect in more advanced stages of neoplastic development coming to favor progression and invasion tumor. The inhibition of the signaling pathway BMP-2 through its antagonists, have shown positive results of antitumor activity and use of Noggin may be a novel therapeutic target for cancer. Given this evidence and the few studies with BMP-2, Noggin and OSCC, the objective of this research was to evaluate the effect of BMP-2 and its antagonist Noggin on proliferation and migration cell in line of cell cultures of human tongue squamous cell carcinoma (SCC25). The study was divided in three groups, a control group, where SCC25 cells suffered no treatment, a BMP-2 group, in which cells were treated with 100ng/ml of BMP-2 and a group of cells that were treated with 100ng/ml of Noggin. For the proliferation assay and cell cycle were established three time intervals (24, 48 and 72 hours). Proliferative activity was investigated by trypan blue and cell cycle analysis by staining with propidium iodide flow cytometry. The potential for migration / invasion of SCC25 cells was performing by a cell invasion assay using Matrigel in a 48-hour interval. The proliferation curve showed a higher proliferation in cells treated with BMP-2 in 72 hours (p < 0.05), and lower overgrowth and cell viability in Noggin group. Recombinant proteins favored a greater percentage of cells in cell cycle phase Go/G1 with a statistically significant difference in the interval of 24 hours (p < 0.05). BMP- 2 produced a greater invasion of cells studied as well as its antagonist Noggin inhibits invasion of cells (p < 0.05). Thus, these results indicate that BMP-2 promotes malignant phenotype, dues stimulates proliferation and invasion of SCC25 cells and, its antagonist Noggin may be an alternative treatment, due to inhibit the tumor progression
Resumo:
Techniques of mind & body control seem to benefit human organism in general and cognition in particular, because they involve a mindfulness practice. However, there is still a scarcity of studies with well-controlled methods to investigate the possible effects of Yoga practice. In this study, we investigated the effects of regular Yoga practice, based on Yoga postures (asanas), breathing techniques, and meditation exercises, on memory and physiologic and psychological parameters related to quality of life. There were significant improvements on performance tasks of short term memory and long term memory. We also observed significant beneficial effects on psychological and physiological parameters such as mood, anxiety, depression, stress, and modulation of the autonomic nervous system in Yoga practitioners group compared to the conventional physical exercises group. The results suggest the possible influences of stress, emotional state and mental training on cognitive effects of yoga practice. Our results support the indication of practice of Yoga for the treatment or prevention of stress, psychological disorders and their possible cognitive consequences
Resumo:
The circadian timing system (CTS) is responsible for the generation and synchronization and the suprachiasmatic nucleus (SCN) of the hypothalamus has been described as the major circadian pacemaker in many mammalian species. The internal temporal organization managed by SCN is disturbed with aging bringing many pathological disorders that range from loss of complex cognitive performance to simple physiological functions. Therefore, our aim was perform a comparative study of the morphological aspects and neurochemical composition in the SCN of marmosets (Callithrix jacchus) adults and older using immunohistochemical techniques. We found morphometric and neurochemical changes in th SCN o folder animals in comparison to adults, among these a possible decreased in retinal projection to the SCN of older animals, found through a decline in CTB immunostaining, which can occur due atrophy and/or decreasing of fibers from the retinohypothalamic tract (RHT). The Klüver-Barrera histological technique strongly suggests a decrease in those fibers from RHT. Also, by means of a morphometric study, it is found a atrophy and numerical decline of neurons in SCN of aged animals, investigated by Nissl technique, and immunostaining with NeuN and calbindin. Relative optical density (ROD) analysis were used to evaluate the expression of some neurochemical components in SCN, such as GFAP expression, which was increased in older, result that indirectly reinforces that morphological changes occurs due the aging; the vasoactive intestinal polipeptide (VIP) showed no expression alteration in SCN of older animals; the serotonin (5-HT) was descreased in the dorsomedial portion of the SCN, and neurpeptide Y (NPY) apparently also decrease due to the increase of age. Many of these modifications were seen in other animals, such as rodents, human primates and non-human primates. These data about marmoset comes to add new information of the effect of aging on structures responsibles for the circadian rhytmicity, and that some behavioral changes controlled by th SCN, and founded in aged animals, may be caused by these morphological and neurochemical changes. Although some results have been quantitatively negative, qualitatively all analysis show significant change comparing adult and older animals, perhaps due to a low sampling number. In conclusion, the marmoset presents several morphological and neurochemical changes in the SCN of aged animals compared to adults, which may result in behavioral changes that favor pathology aging related
Resumo:
The use and the demand for substances that enhance masculinity, strength and sexual power are not novel. Over the years, this search has assisted the research directions in this area, leading to the discovery of the primary male sex hormone testosterone in 1935. Since then, numerous testosterone analogue compounds were synthesized, which are generically called Anabolic Androgenic Steroids (AAS). The AAS were produced for therapeutic purposes, but an increase in the use of these compounds for other purposes occurred over time. Initially they were used mainly to improve performance in athletes. However, recent studies have shown that the use of AAS by non-athletes with aesthetical purposes have been increasing as well. The abuse of AAS with non-clinical purposes can promote a number of physiological alterations, such as heart, liver, respiratory and psychological problems such as changes in mood, levels of anxiety and aggression. Exposure to supraphysiological doses of AAS is associated with behavioral changes, however, little is known about the effects of AAS on cognitive functions. In this work, we aimed to mimic the AAS abuse in humans with intramuscular administration of a supraphysiological dose of testosterone propionate (TP) in rats. We investigated the effects of this treatment on different aspects of cognitive function, specifically learning, memory and anxiety. Adult male Wistar rats were tested in the spontaneous alternation, novel object recognition and plus-maze discriminative avoidance tasks. The control group received intramuscular injections of vegetable oil (vehicle), and the TP group received injections of TP (10 mg/kg, i.m.). The injections were administered for 40 days, with intervals of 48 hours (chronic treatment) or in a single injection (acute treatment). In addition to the behavioral assessments, we performed biochemical analyzes as indicators of the endocrine effects of the treatment. Our results show that chronic treatment with a supraphysiological dose of TP caused memory impairments in the novel object recognition and the discriminative avoidance tasks. The spatial working memory (evaluated by spontaneous alternation task) was not affected. Also, we did not observe changes in anxiety levels. Regarding the biochemical parameters, chronic treatment increased serum levels of glutamicpyruvic transaminase, an indicator of hepatic and pancreatic lesions (as those observed after chronic use of these substances in humans). On the other hand, acute treatment with PT did not promote significant changes in any of these parameters when compared to the control group. In summary, we conclude that chronic treatment with a supraphysiological dose of testosterone propionate produces memory deficits in novel object recognition and retrieval of the discriminative avoidance task in adult male rats
Resumo:
The plus-maze discriminative avoidance paradigm has been used to study the relationship between aversive memory and anxiety. The present study aims to verify if the elevated plus-maze can provide information about appetitive memory and anxiety, through a task motivated by food reward. Animals were allowed to explore an elevated plus-maze and received reinforcement in one of the enclosed arms. In a test session performed 24h later, in the absence of reward, rats showed preference for the previously rewarded enclosed arm over the neutral enclosed arm. The administration of diazepam and pentylenetetrazole before training induced, respectively, anxiolytic and anxiogenic effects (as evaluated by open-arm exploration). Both drugs induced amnestic effects, i.e., lack of preference for the rewarded arm in the test session. The results suggest that appetitive memory can be influenced by anxiety levels as well. The plus-maze appetitive discrimination task seems to be a useful model to investigate the relationship between memory and anxiety
Resumo:
The principal zeitgeber for most of species is the light-dark photocycle (LD), though other environment factors as food availability, temperature and social cues may act. Daily adjustment of the circadian pacemaker may result from integration of environmental photic and non-photic cues with homeostatic cues. Characterization of non-photic effects on circadian timing system in diurnal mammals is scarce in relation to nocturnal, especially for ecologically significant cues. Thus, we analyzed the effect of conspecific vocalizations and darkness on circadian activity rhythm (CAR) in the diurnal primate Callithirx jacchus. With this objective 7 male adults were isolated in a room with controlled illumination, temperature (26,8 ± 0,2°C) and humidity (81,6 ± 3,6%), and partial acoustic isolation. Initially they were under LD 12:12 (~300:2 lux), and subsequently under constant illumination (~2 lux). Two pulses of conspecific vocalizations were applied in total darkness, separated by 22 days, at 7:30 h (external time) during 1 h. They induced phase delays at circadian times (CTs) 1 and 10 and predominantly phase advances at CTs 9 and 15. After that, two dark pulses were applied, separated by 14 days, during 1 h at 7:30 h (external time). These pulses induced phase delays at CTs 2, 3 and 18, predominantly phase advances at CTs 8, 10 and 19, and no change at CT 14. However, marmosets CAR showed oscillations in endogenous period and active phase duration influenced by vocalizations from animals outside the experimental room, which interfered on the phase responses to pulses. Furthermore, social masking and relative coordination with colony were observed. Therefore, phase responses obtained in this work cannot be attributed only to pulses. Afterwards, pulses of conspecific vocalizations were applied in total darkness at 19:00 h (external time), during 1 h for 5 consecutive days, and after 21 days, for 30 consecutive days, on attempt to synchronize the CAR. No animal was synchronized by these daily pulses, although oscillations in endogenous period were observed for all. This result may be due to habituation. Other possibility is the absence of social significance of the vocalizations for the animals due to random reproduction, since each vocalization has a function that could be lost by a mixture of sounds. In conclusion, conspecific vocalizations induce social masking and relative coordination in marmosets CAR, acting as weak zeitgeber
Resumo:
Caffeine is considered the most consumed psychostimulant in the world, presenting several central and peripheral effects. In the Central Nervous System the major effect occur by its antagonistic activity at the A1 and A2a subtypes of the adenosine receptors. These receptors are responsible for the slow-wave sleep induction, and their binding, caused by the consumption of foods and beverages that contain caffeine, cause behaviors like increase of alertness, mood and locomotion. The effects of caffeine on memory are still discussed because of the diversity of experimental protocols. Also, it does not have the same effects on all stages of the processing of memory - acquisition, consolidation and recall. Thus, using the marmoset (Callitrhix jacchus) as subject, we aim to evaluate the effects of caffeine on the memory of this primate through the conditioned place preference paradigm, where the animal selects a context by presence of food. This cognitive task consists of five phases. The first phase was two sessions of pre-exposure, in which they were evaluated for preference for any compartment of the apparatus. Then, we proceeded the training, conditioning the animals to the food-present context for 8 days. Then, there was administration of caffeine or placebo (10mg/kg) for 8 consecutive days, during the pre-sleep phase, where the 20 animals were distributed in two groups: placebo and repeated. The forth phase was one day of retraining, a re-exposure of the apparatus to the marmosets followed by the administration of caffeine (for the repeated group and a new group called abstinence) or placebo (for placebo and abstinence groups). Finally, was the test where we evaluated if the subjects learned where the food was present. Moreover, in this work we evaluate the existence of differences between females and males on the task, and the locomotor activity for the experimental groups. The results showed that in the pre-exposure phase the animals were habituated on the apparatus and did not present differences for any contexts. In training, they were able to learn the conditioning task, independent of gender. For the retraining, the two groups exhibited more interactions in rewarded context than that in non-rewarded context. Nevertheless, in the locomotor activity, the repeated group moved similarly in contact with the apparatus and outside of it. In the other hand, the animals of the placebo group moved more when in contact with the apparatus. In the test phase, the marmosets under influence of caffeine presented an increase in the locomotor activity when compared with the placebo group, corroborating works that show this increase in locomotion. In the learning evaluation, the continuous and abstinence groups had a bad performance in the task in relation to the placebo and acute groups. This suggests that the prolonged administration of caffeine disrupts the memories because it affected sleep, which is largely responsible offline processing of memories
Resumo:
Anxiety is an emotional phenomenon, and normally it is interpreted as an adaptative behavior front to adversities. In its pathological form, anxiety can severely affect aspects related to the personal and professional life. Studies have shown a close relationship between anxiety disorders and aversive memory processing. Considering that the pharmacotherapy of anxiety disorders is still limited, innovative anxiolytic agents are needed. In this regard, neuropeptides systems are interesting therapeutic targets to the treatment of psychopathologies. Neuropeptide S (NPS), a 20-aminoacid peptide, is the endogenous ligand of a G-protein coupled receptor (NPSR), which has been reported to evoke hyperlocomotion, awakefull states, besides anxiolysis and memory improvements in rodents. This study aimed to investigate the effects of biperiden (BPR; an amnesic drug), diazepam (DZP; an anxiolytic drug) and NPS at three distinct times: pre-training, post-training, and pre-test, in order to assess anxiety and memory process in the same animal model. The elevated Tmaze (ETM) is an apparatus derived from the elevated plus-maze test, which consists of one enclosed and two open arms. The procedure is based on the avoidance of open spaces learned during training session, in which mice were exposed to the enclosed arm as many times as needed to stay 300 s. In the test session, memory is assessed by re-exposing the mouse to the enclosed arm and the latency to enter an open arm was recorded. When injected pre-training, BPR (1 mg/kg) impaired learning and memory processing; DZP (1 and 2 mg/kg) evoked anxiolysis, but only at the dose of 2 mg/kg impaired memory; and NPS 0.1 nmol induced anxiolysis without affecting memory. Post-training injection of DZP (2 mg/kg) or BPR (1 and 3 mg/kg) did not affect memory consolidation, while the post-trainning administration of NPS 1 nmol, but not 0.1 nmol, improved memory in mice. Indeed, pre-trainning administration of NPS 1 nmol did not prevent memory impairment elicited by BPR (2 mg/kg, injected before training). In the open field test, BPR 1 mg/kg and NPS 1 nmol induced hyperlocomotion in mice. In conclusion, the proposed ETM task is practical for the detection of the anxiolytic and amnesic effects of drugs. The anxiolytic and memory enhancement effects of NPS were detected in the ETM task, and reinforce the role of NPS system as an interesting therapeutic target to the treatment of anxiety disorders
Resumo:
Neuropeptide S (NPS) is the endogenous ligand of a G-protein coupled receptor. Preclinical studies have shown that NPSR receptor activation can promote arousal, anxiolytic-like behavioral, decrease in food intake, besides hyperlocomotion, which is a robust but not well understood phenomenon. Previous findings suggest that dopamine transmission plays a crucial role in NPS hyperactivity. Considering the close relationship between dopamine and Parkinson Disease (PD), and also that NPSR receptors are expressed on dopaminergic nuclei in the brain, the current study attempted to investigate the effects of NPS in motor deficits induced by intracerebroventricular (icv) administration of 6-OHDA and systemic administration of haloperidol. Motor deficits induced by 6-OHDA and haloperidol were evaluated on Swiss mice in the rota-rod and catalepsy test. Time on the rotating rod and time spent immobile in the elevated bar were measured respectively in each test. L-Dopa, a classic antiparkinsonian drug, and NPS were administrated in mice submitted to one of the animal models of PD related above. 6-OHDA injection evoked severe motor impairments in rota-rod test, while the cataleptic behavior of 6-OHDA injected mice was largely variable. The administration of L-Dopa (25 mg/kg) and NPS (0,1 and 1 nmol) reversed motor impairments induced by 6-OHDA in the rota-rod. Haloperidolinduced motor deficits on rota-rod and catalepsy tests which were reversed by L-Dopa (100 e 400 mg/kg), but not by NPS (0,1 and 1 nmol) administration. The association of L-Dopa 10 mg/kg and NPS 1 nmol was also unable to counteract haloperidol-induced motor deficits. To summarize, 6-OHDA-, but not haloperidol-, induced motor deficits were reversed by the central administration of NPS. These data suggest that NPS possibly facilitates dopamine release in basal ganglia, what would explain the overcome of motor performance promoted by NPS administration in animals pretreated with 6-OHDA, but not haloperidol. Finally, the presented findings point, for the first time, to the potential of NPSR agonist as an innovative treatment for PD.
Resumo:
Excessive alcohol consumption is responsible for many harmful effects on individuals and society. Despite years of research, the mechanisms by which alcohol affects neurological functions and the exact causes of cognitive impairment related to long-term use are unknown. In this sense, this master study proposed to observe how different doses of alcohol affect the addiction response and the learning ability of two fish species: Betta splendens and Danio rerio, the latter a commonly model due to organizational and functional characteristics shared with mammals. For this, different concentrations of ethanol (0%, 0.1%, 0.25%, 1% and 1.5%) were used in acute, chronic and withdrawal treatments. We tested the fish in three experimental protocols: 1) alcohol addiction potential using conditioned place preference, 2) associative conditioning using light as unconditioned stimulus and food as conditioned stimulus and 3) spatial learning using a maze without cues. For the alcohol addiction potential, preference between two different places in a shuttle box was tested before and after alcohol exposure (chronic and acute). In this test, the animals intoxicated by 0.1% did not change behavior, while animals receiving 1% and 1.5% alcohol changed the initial preference to the side where they received alcohol For the associative conditioning, the results show that the groups undergoing low dose (0.1%), both in chronic and withdrawal treatment, learned the task faster than control; groups under 0.25 and 1% alcohol withdrawal learned the task after control; groups chronically intoxicated with these doses did not learn the task. For the spatial learning test, fish submitted to acute and chronic treatments decreased the time to exit the maze; there were significant differences in the animal s performance in a dose-dependent pattern. This difference was not observed for the withdrawal treatment. Given these results, we conclude that the effects of alcohol on learning are dependent on the dosage. Furthermore, low doses of alcohol seem to maximize animal performance on learning tasks and do not alter their seeking behavior, while higher doses induced addition and hinder learning