970 resultados para Eddy


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean observations carried out in the framework of the Collaborative Research Center 754 (SFB 754) "Climate-Biogeochemistry Interactions in the Tropical Ocean" are used to study (1) the structure of tropical oxygen minimum zones (OMZs), (2) the processes that contribute to the oxygen budget, and (3) long-term changes in the oxygen distribution. The OMZ of the eastern tropical North Atlantic (ETNA), located between the well-ventilated subtropical gyre and the equatorial oxygen maximum, is composed of a deep OMZ at about 400 m depth with its core region centred at about 20° W, 10° N and a shallow OMZ at about 100 m depth with lowest oxygen concentrations in proximity to the coastal upwelling region off Mauritania and Senegal. The oxygen budget of the deep OMZ is given by oxygen consumption mainly balanced by the oxygen supply due to meridional eddy fluxes (about 60%) and vertical mixing (about 20%, locally up to 30%). Advection by zonal jets is crucial for the establishment of the equatorial oxygen maximum. In the latitude range of the deep OMZ, it dominates the oxygen supply in the upper 300 to 400 m and generates the intermediate oxygen maximum between deep and shallow OMZs. Water mass ages from transient tracers indicate substantially older water masses in the core of the deep OMZ (about 120-180 years) compared to regions north and south of it. The deoxygenation of the ETNA OMZ during recent decades suggests a substantial imbalance in the oxygen budget: about 10% of the oxygen consumption during that period was not balanced by ventilation. Long-term oxygen observations show variability on interannual, decadal and multidecadal time scales that can partly be attributed to circulation changes. In comparison to the ETNA OMZ the eastern tropical South Pacific OMZ shows a similar structure including an equatorial oxygen maximum driven by zonal advection, but overall much lower oxygen concentrations approaching zero in extended regions. As the shape of the OMZs is set by ocean circulation, the widespread misrepresentation of the intermediate circulation in ocean circulation models substantially contributes to their oxygen bias, which might have significant impacts on predictions of future oxygen levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Turbulence profile measurements made on the upper continental slope and shelf of the southeastern Weddell Sea reveal striking contrasts in dissipation and mixing rates between the two sites. The mean profiles of dissipation rates from the upper slope are 1-2 orders of magnitude greater than the profiles collected over the shelf in the entire water column. The difference increases toward the bottom where the dissipation rate of turbulent kinetic energy and the vertical eddy diffusivity on the slope exceed 10?7 W kg?1 and 10?2 m2 s?1, respectively. Elevated levels of turbulence on the slope are concentrated within a 100 m thick bottom layer, which is absent on the shelf. The upper slope is characterized by near-critical slopes and is in close proximity to the critical latitude for semidiurnal internal tides. Our observations suggest that the upper continental slope of the southern Weddell Sea is a generation site of semidiurnal internal tide, which is trapped along the slope along the critical latitude, and dissipates its energy in a inline image m thick layer near the bottom and within inline image km across the slope.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computer Fluid Dynamics tools have already become a valuable instrument for Naval Architects during the ship design process, thanks to their accuracy and the available computer power. Unfortunately, the development of RANSE codes, generally used when viscous effects play a major role in the flow, has not reached a mature stage, being the accuracy of the turbulence models and the free surface representation the most important sources of uncertainty. Another level of uncertainty is added when the simulations are carried out for unsteady flows, as those generally studied in seakeeping and maneuvering analysis and URANS equations solvers are used. Present work shows the applicability and the benefits derived from the use of new approaches for the turbulence modeling (Detached Eddy Simulation) and the free surface representation (Level Set) on the URANS equations solver CFDSHIP-Iowa. Compared to URANS, DES is expected to predict much broader frequency contents and behave better in flows where boundary layer separation plays a major role. Level Set methods are able to capture very complex free surface geometries, including breaking and overturning waves. The performance of these improvements is tested in set of fairly complex flows, generated by a Wigley hull at pure drift motion, with drift angle ranging from 10 to 60 degrees and at several Froude numbers to study the impact of its variation. Quantitative verification and validation are performed with the obtained results to guarantee their accuracy. The results show the capability of the CFDSHIP-Iowa code to carry out time-accurate simulations of complex flows of extreme unsteady ship maneuvers. The Level Set method is able to capture very complex geometries of the free surface and the use of DES in unsteady simulations highly improves the results obtained. Vortical structures and instabilities as a function of the drift angle and Fr are qualitatively identified. Overall analysis of the flow pattern shows a strong correlation between the vortical structures and free surface wave pattern. Karman-like vortex shedding is identified and the scaled St agrees well with the universal St value. Tip vortices are identified and the associated helical instabilities are analyzed. St using the hull length decreases with the increase of the distance along the vortex core (x), which is similar to results from other simulations. However, St scaled using distance along the vortex cores shows strong oscillations compared to almost constants for those previous simulations. The difference may be caused by the effect of the free-surface, grid resolution, and interaction between the tip vortex and other vortical structures, which needs further investigations. This study is exploratory in the sense that finer grids are desirable and experimental data is lacking for large α, especially for the local flow. More recently, high performance computational capability of CFDSHIP-Iowa V4 has been improved such that large scale computations are possible. DES for DTMB 5415 with bilge keels at α = 20º were conducted using three grids with 10M, 48M and 250M points. DES analysis for flows around KVLCC2 at α = 30º is analyzed using a 13M grid and compared with the results of DES on the 1.6M grid by. Both studies are consistent with what was concluded on grid resolution herein since dominant frequencies for shear-layer, Karman-like, horse-shoe and helical instabilities only show marginal variation on grid refinement. The penalties of using coarse grids are smaller frequency amplitude and less resolved TKE. Therefore finer grids should be used to improve V&V for resolving most of the active turbulent scales for all different Fr and α, which hopefully can be compared with additional EFD data for large α when it becomes available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infrastructure as a Service clouds are a flexible and fast way to obtain (virtual) resources as demand varies. Grids, on the other hand, are middleware platforms able to combine resources from different administrative domains for task execution. Clouds can be used by grids as providers of devices such as virtual machines, so they only use the resources they need. But this requires grids to be able to decide when to allocate and release those resources. Here we introduce and analyze by simulations an economic mechanism (a) to set resource prices and (b) resolve when to scale resources depending on the users’ demand. This system has a strong emphasis on fairness, so no user hinders the execution of other users’ tasks by getting too many resources. Our simulator is based on the well-known GridSim software for grid simulation, which we expand to simulate infrastructure clouds. The results show how the proposed system can successfully adapt the amount of allocated resources to the demand, while at the same time ensuring that resources are fairly shared among users.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evapotranspiration (ETc) of sprinkler-irrigated rice was determined for the semiarid conditions of NE Spain during 2001, 2002 and 2003. The surface renewal method, after calibration against the eddy covariance method, was used to obtain values of sensible heat flux (H) from high-frequency temperature readings. Latent heat flux values were obtained by solving the energy balance equation. Finally, lysimeter measurements were used to validate the evapotranspiration values obtained with the surface renewal method. Seasonal rice evapotranspiration was about 750–800 mm. Average daily ETc for mid-season (from 90 to 130 days after sowing) was 5.1, 4.5 and 6.1 mm day−1 for 2001, 2002 and 2003, respectively. The experimental weekly crop coefficients fluctuated in the range of 0.83–1.20 for 2001, 0.81–1.03 for 2002 and 0.84–1.15 for 2003. The total growing season was about 150–160 days. In average, the crop coefficients for the initial (Kcini), mid-season (Kcmid) and late-season stages (Kcend) were 0.92, 1.06 and 1.03, respectively, the length of these stages being about 55, 45 and 25 days, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the renormalization group flow of the average action of the stochastic Navier-Stokes equation with power-law forcing. Using Galilean invariance, we introduce a nonperturbative approximation adapted to the zero-frequency sector of the theory in the parametric range of the Hölder exponent 4−2 ɛ of the forcing where real-space local interactions are relevant. In any spatial dimension d, we observe the convergence of the resulting renormalization group flow to a unique fixed point which yields a kinetic energy spectrum scaling in agreement with canonical dimension analysis. Kolmogorov's −5/3 law is, thus, recovered for ɛ=2 as also predicted by perturbative renormalization. At variance with the perturbative prediction, the −5/3 law emerges in the presence of a saturation in the ɛ dependence of the scaling dimension of the eddy diffusivity at ɛ=3/2 when, according to perturbative renormalization, the velocity field becomes infrared relevant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been significant research in the study of in-plane charge-carrier transport in graphene in order to understand and exploit its unique electrical properties; however, the vertical graphene–semiconductor system also presents opportunities for unique devices. In this letter, we investigate the epitaxial graphene/p-type 4H-SiC system to better understand this vertical heterojunction. The I–V behavior does not demonstrate thermionic emission properties that are indicative of a Schottky barrier but rather demonstrates characteristics of a semiconductor heterojunction. This is confirmed by the fitting of the temperature-dependent I–V curves to classical heterojunction equations and the observation of band-edge electroluminescence in SiC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a wide-bandgap semiconductor, gallium nitride (GaN) is an attractive material for next-generation power devices. To date, the capabilities of GaN-based high electron mobility transistors (HEMTs) have been limited by self-heating effects (drain current decreases due to phonon scattering-induced carrier velocity reductions at high drain fields). Despite awareness of this, attempts to mitigate thermal impairment have been limited due to the difficulties involved with placing high thermal conductivity materials close to heat sources in the device. Heat spreading schemes have involved growth of AIGaN/GaN on single crystal or CVD diamond, or capping of fullyprocessed HEMTs using nanocrystalline diamond (NCD). All approaches have suffered from reduced HEMT performance or limited substrate size. Recently, a "gate after diamond" approach has been successfully demonstrated to improve the thermal budget of the process by depositing NCD before the thermally sensitive Schottky gate and also to enable large-area diamond implementation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reduced performance in Gallium Nitride (GaN) based high electron mobility transistors (HEMTs) as a result of self-heating has been well-documented. A new approach, termed “diamond-before-gate" is shown to improve the thermal budget of the deposition process and enables large area diamond without degrading the gate metal NCD capped devices had a 20% lower channel temperature at equivalent power dissipation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vertical diodes of epitaxial graphene on n 4H-SiC were investigated. The graphene Raman spectraexhibited a higher intensity in the G-line than the 2D-line, indicative of a few-layer graphene film.Rectifying properties improved at low temperatures as the reverse leakage decreased over six ordersof magnitude without freeze-out in either material. Carrier concentration of 10 16 cm 3in the SiCremained stable down to 15 K, while accumulation charge decreased and depletion width increasedin forward bias. The low barrier height of 0.08 eV and absence of recombination-induced emissionindicated majority carrier field emission as the dominant conduction mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La presente Tesis Doctoral tiene como objetivo el estudio de flujo turbulento cargado con partículas sólidas a través de canales y tuberías de sección constante usando un enfoque Euleriano-Lagrangiano. El campo de flujo de la fase de transporte (aire) se resuelve usando simulación de grandes escalas (LES), implementada en un programa de volúmenes finitos mientras que las ecuaciones gobernantes de la fase dispersa son resueltas por medio de un algoritmo de seguimiento Lagrangiano de partículas que ha sido desarrollado y acoplado al programa que resuelve el flujo. Se estudia de manera sistemática y progresiva la interacción fluido→partícula (one-way coupling), a través de diferentes configuraciones geométricas en coordenadas cartesianas (canales de sección constante y variable) y en coordenadas cilíndricas (tuberías de sección constante y sección variable) abarcando diferentes números de Reynolds y diferentes tamaños de partículas; todos los resultados obtenidos han sido comparados con datos publicados previamente. El estudio de flujo multifásico a través de, tuberías de sección variable, ha sido abordada en otras investigaciones mayoritariamente de forma experimental o mediante simulación usando modelos de turbulencia menos complejos y no mediante LES. El patrón de flujo que se verifica en una tubería con expansión es muy complejo y dicha configuración geométrica se halla en múltiples aplicaciones industriales que involucran el transporte de partículas sólidas, por ello es de gran interés su estudio. Como hecho innovador, en esta tesis no solo se resuelven las estadísticas de velocidad del fluido y las partículas en tuberías con diferentes tamaños de expansión y diferentes regímenes de flujo sino que se caracteriza, usando diversas formulaciones del número de Stokes y el parámetro de arrastre, el ingreso y acumulación de partículas dentro de la zona de recirculación, obteniéndose resultados coincidentes con datos experimentales. ABSTRACT The objective of this Thesis research is to study the turbulent flow laden with solid particles through channels and pipes with using Eulerian-Lagrangian approach. The flow field of the transport phase (air ) is solved using large eddy simulation ( LES ) implemented in a program of finite volume while the governing equations of the dispersed phase are resolved by means of a particle Lagrangian tracking algorithm which was developed and coupled to principal program flow solver . We studied systematically and progressively the fluid interaction → particle ( one- way coupling ) , through different geometric configurations in Cartesian coordinates ( channel with constant and variable section) and in cylindrical coordinates ( pipes with constant section and variable section ) covering different Reynolds numbers and different particle sizes, all results have been compared with previously published data . The study of multiphase flow through, pipes with variable section has been addressed in other investigations predominantly experimentally or by simulation using less complex models and no turbulence by LES. The flow pattern is verified in a pipe expansion is very complex and this geometry is found in many industrial applications involving the transport of solid particles, so it is of great interest to study. As an innovator fact , in this Thesis not only finds fluid velocity statistics and particles with different sizes of pipe expansion and different flow regimes but characterized, using various formulations of the Stokes number and the drag parameter are resolved, the entry and accumulation of particles within the recirculation zone , matching results obtained with experimental data.