903 resultados para Eastern Cape
Resumo:
The sub-Antarctic Magellanic ecoregion harbors a high diversity of bryophytes, greater than the species richness of vascular plants. Despite this fact, phenological studies on bryophytes are lacking for this ecoregion and Chile. Based on the study of the sporophytic phase of Tayloria dubyi, an endemic moss from the sub-Antarctic Magellanic ecoregion, we propose a methodology for phonological studies on austral bryophytes. We defined five phenophases, easily distinguishable with a hand-lens, which were monthly recorded during 2007 and 2008 in populations of T dubyi at the Omora Ethnobotanical Park and Mejillones Bay on Navarino Island (55 degrees S) in the Cape Horn Biosphere Reserve. The sporophytic (or reproductive) phase of T. dubyi presented a clear seasonality. After growing in November, in three months (December-February) of the austral reproductive season the sporophytes mature and release their spores; by March they are already senescent. T. dubyi belongs to the Splachnaceae family for which entomochory (dispersal of spores by insects, specifically Diptera) has been detected in the Northern Hemisphere. The period of spores release in T. dubyi coincides with the months of highest activity of Diptera which are potential dispersers of spores; hence, entomochory could also take place in sub-Antarctic Magellanic ecoregion. In sum, our work: (i) defines a methodology for phenological studies in austral bryophytes, (ii) it records a marked seasonality ion the sporophyte phase of T dubyi, and (iii) it proposes to evaluate in future research the occurrence of entomochory in Splachnaceae species growing in the sub-Antarctic peatlands and forest ecosystems in the Southern Hemisphere.
Resumo:
The moss Tayloria dubyi (Splachnaceae) is endemic to the subantarctic Magallanes ecoregion where it grows exclusively on bird dung and perhaps only on feces of the goose Chloephaga picta, a unique habitat among Splachnaceae. Some species of Splachnaceae from the Northern Hemisphere are known to recruit coprophilous flies as a vector to disperse their spores by releasing intense odors mimicking fresh clung or decaying corpses. The flies land on the capsule, and may get in contact with the protruding mass of spores that stick to the insect body. The dispersal strategy relies on the spores falling off when the insect reaches fresh droppings or carrion. Germination is thought to be rapid and a new population is quickly established over the entire substrate. The objectives of this investigation were to determine whether the coprophilous T. dubyi attracts flies and to assess the taxonomic diversity of the flies visiting this moss. For this, fly traps were set up above mature sporophyte bearing populations in two peatlands on Navarino Island. We captured 64 flies belonging to the Muscidae (Palpibracus chilensis), Tachinidae (Dasyuromyia sp) and Sarcophagidae (not identified to species) above sporophytes of T. dubyi, whereas no flies were captured in control traps set up above Sphagnum mats nearby.
Resumo:
In the present study Tradescantia pallida micronucleus (Trad-MCN) bioassay was used to assess the genotoxicity of particulate matter with a mass median aerodynamic diameter less than 10 pm (PM(10)) in Tangara da Serra (MT), a Brazilian Amazon region that suffers the impact of biomass burning. The levels of PM (coarse and fine size fractions) and black carbon (BC) collected were also measured. Furthermore, the alkanes and polycyclic aromatic hydrocarbons (PAHs) were identified and quantified in the samples taken during the burning period by gas chromatography with flame ionization detection (GC-FID). The PM and BC results for both fractions indicate a strong correlation (p < 0.001). The analysis of alkanes indicates an anthropic influence. Retene was the most abundant PAH found, an indicator of biomass burning, and 12 other PAHs considered to be potentially mutagenic and/or carcinogenic were identified in this sample. The Trad-MCN bioassay showed a significant increase in micronucleus frequency during the period of most intense burning, possibly related to the mutagenic PAHs that were found in such extracts. This study demonstrated that Trad-MCN was sensitive and efficient in evaluating the genotoxicity of organic compounds from biomass burning. It further emphasizes the importance of performing chemical analysis, because changes in chemical composition generally have a negative effect on many living organisms. This bioassay (ex situ), using T. pallida with chemical analysis, is thus recommended for characterizing the genotoxicity of air pollution. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.
Resumo:
Quasi-simultaneous vertically resolved multiwavelength aerosol Raman lidar observations were conducted in the near field (Praia, Cape Verde, 15 degrees N, 23.5 degrees W) and in the far field (Manaus, Amazon basin, Brazil, 2.5 degrees S, 60 degrees W) of the long-range transport regime between West Africa and South America. Based on a unique data set (case study) of spectrally resolved backscatter and extinction coefficients, and of the depolarization ratio a detailed characterization of aerosol properties, vertical stratification, mixing, and aging behavior during the long-distance travel in February 2008 (dry season in western Africa, wet season in the Amazon basin) is presented. While highly stratified aerosol layers of dust and smoke up to 5.5 km height were found close to Africa, the aerosol over Manaus was almost well-mixed, reached up to 3.5 km, and mainly consisted of aged biomass burning smoke. Citation: Ansmann, A., H. Baars, M. Tesche, D. Muller, D. Althausen, R. Engelmann, T. Pauliquevis, and P. Artaxo (2009), Dust and smoke transport from Africa to South America: Lidar profiling over Cape Verde and the Amazon rainforest, Geophys. Res. Lett., 36, L11802, doi: 10.1029/2009GL037923.
Resumo:
Our current understanding of the tectonic history of the principal Pan-African orogenic belts in southwestern Africa, reaching from the West Congo Belt in the north to the Lufilian/Zambezi, Kaoko, Damara, Gariep and finally the Saldania Belt in the south, is briefly summarized. On that basis, possible links with tectono-stratigraphic units and major structures on the eastern side of the Rio de la Plata Craton are suggested, and a revised geodynamic model for the amalgamation of SW-Gondwana is proposed. The Rio de la Plata and Kalahari Cratons are considered to have become juxtaposed already by the end of the Mesoproterozoic. Early Neoproterozoic rifting led to the fragmentation of the northwestern (in today`s coordinates) Kalahari Craton and the splitting off of several small cratonic blocks. The largest of these ex-Kalahari cratonic fragments is probably the Angola Block. Smaller fragments include the Luis Alves and Curitiba microplates in eastern Brazil, several basement inliers within the Damara Belt, and an elongate fragment off the western margin, named Arachania. The main suture between the Kalahari and the Congo-So Francisco Cratons is suspected to be hidden beneath younger cover between the West Congo Belt and the Lufilian/Zambezi Belts and probably continues westwards via the Cabo Frio Terrane into the Goias magmatic arc along the Brasilia Belt. Many of the rift grabens that separated the various former Kalahari cratonic fragments did not evolve into oceanic basins, such as the Northern Nosib Rift in the Damara Belt and the Gariep rift basin. Following latest Cryogenian/early Ediacaran closure of the Brazilides Ocean between the Rio de la Plata Craton and the westernmost fragment of the Kalahari Craton, the latter, Arachania, became the locus of a more than 1,000-km-long continental magmatic arc, the Cuchilla Dionisio-Pelotas Arc. A correspondingly long back-arc basin (Marmora Basin) on the eastern flank of that arc is recognized, remnants of which are found in the Marmora Terrane-the largest accumulation of oceanic crustal material known from any of the Pan-African orogenic belts in the region. Corresponding foredeep deposits that emerged from the late Ediacaran closure of this back-arc basin are well preserved in the southern areas, i.e. the Punta del Este Terrane, the Marmora Terrane and the Tygerberg Terrane. Further to the north, present erosion levels correspond with much deeper crustal sections and comparable deposits are not preserved anymore. Closure of the Brazilides Ocean, and in consequence of the Marmora back-arc basin, resulted from a change in the Rio de la Plata plate motion when the Iapetus Ocean opened between the latter and Laurentia towards the end of the Ediacaran. Later break-up of Gondwana and opening of the modern South Atlantic would have followed largely along the axis of the Marmora back-arc basin and not along major continental sutures.
Resumo:
The Mantiqueira Province represents a series of supracrustal segments of the South-American counterpart formed during the Gondwana Supercontinent agglutination. In this crustal domain, the process of escape tectonics played a conspicuous role, generating important NE-N-S-trending lineaments. The oblique component of the motions of the colliding tectonic blocks defined the transpressional character of the main suture zones: Lancinha-Itariri, Cubato-Arcadia-Areal, Serrinha-Rio Palmital in the Ribeira Belt and Sierra Ballena-Major Gercino in the Dom Feliciano Belt. The process as a whole lasted for ca. 60 Ma, since the initial collision phase until the lateral escape phase predominantly marked by dextral and subordinate sinistral transpressional shear zones. In the Dom Feliciano Belt, southern Brazil and Uruguay, transpressional event at 630-600 Ma is recognized and in the Ribeira Belt, despite less coevally, the transpressional event occurred between 590 and 560 Ma in its northern-central portion and between ca. 625 and 595 Ma in its central-southern portion. The kinematics of several shear zones with simultaneous movement in opposite directions at their terminations is explained by the sinuosity of these lineaments in relation to a predominantly continuous westward compression.
Resumo:
Late Quaternary deposits in the northeastern Brazil have been scarcely investigated, despite their relevance to the discussion of the post-rift evolution of the South American passive margin within the context of landform, sea level and tectonic deformation. Sedimentological, stratigraphic and morphological characterization of these deposits, referred as Post-Barreiras Sediments, led to their distinction from underlying Early/Middle Miocene strata. Based on optically stimulated luminescence (OSL) dating, two sedimentary units (PB1 and PB2) were recognized and related to the time intervals between 74.8 +/- 9.3 and 30.8 +/- 6.9 ka, and 8.8 +/- 0.9 and 1.8 +/- 0.2 ka, respectively. Unit PB1 consists of indurated sandstones and breccias either with massive bedding or complex types of soft sediment deformation structures generated by contemporaneous seismic activity. Unit PB2 is composed of massive sands or sands related to structures developed by dissipation of dunes. The present work, focusing on the Post-Barreiras Sediments, discusses landform, sea level and tectonics of the eastern South American passive margin during the latest Quaternary. Non-deposition and sub-aerial exposure related to the Tortonian worldwide low sea level combined with tectonic quiescence followed the Miocene transgression. Tectonic deformation in the latest Pleistocene created space to accommodate unit PB1 in downthrown faulted blocks and, perhaps, also synclines produced by strike-slip deformation. Although deposition of this unit was simultaneous with the progressive fall in sea level that followed the Last Interglacial Maximum, punctuated rises combined with land subsidence led to marine deposition close to the modern coastline. Renewed subsidence in the Holocene gave rise to accommodation of the Post-Barreiras Sediments. Most of unit PB2 was deposited during the Holocene Transgression, but it is not composed of marine sediments, which suggests either an insignificant rise in relative sea level or aeolian reworking of thin transgressive sands. The data presented here lead to a review of the evolution of the South American passive margin based on assumptions of uniform sedimentation and undeformed planation surfaces over a wide coastal area of the northeastern Brazil. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The relation between alkaline magmatism and tectonism has been a contentious issue, particularly for the Precambrian continental regions. Alkaline complexes at the southwestern margin of Eastern Ghats belt, India, have been interpreted as rift-valley magmatism. However, those complexes occurring in granulite ensemble in the interior segments of the Eastern Ghats belt could not possibly be related to the rift-system, assumed for the western margin of the Eastern Ghats belt. Koraput complex was emplaced in a pull-apart structure, dominated by magmatic fabrics and geochemically similar to a fractionated alkaline complex, compatible with an alkalibasalt series. Rairakhol complex, on the other hand, shows dominantly solid-state deformation fabrics and geochemically similar to a fractionated calc-alkaline suite. Isotopic data for the Koraput complex indicate ca. 917 Ma alkaline magmatism from a depleted mantle source and postcrystalline thermal overprint at ca. 745 Ma, also recorded from sheared metapelitic country rocks. The calc-alkaline magmatism of the Rairakhol complex occurred around 938 Ma, from an enriched mantle source, closely following Grenvillian granulite facies imprint in the charnockitic country rocks.
Resumo:
The southwestern margin of the Eastern Ghats Belt characteristically exposes mafic dykes intruding massif-type charnockites. Dykes of olivine basalt of alkaline composition have characteristic trace element signatures comparable with Ocean Island Basalt (OIB). Most importantly strong positive Nb anomaly and low values of Zr/Nb ratio are consistent with OIB source of the mafic dykes. K-Ar isotopic data indicate two cooling ages at 740 and 530 Ma. The Pan-African thermal event could be related to reactivation of major shear zones and represented by leuco-granite vein along minor shear bands. And 740 Ma cooling age may indicate the low grade metamorphic imprints, noted in some of the dykes. Although no intrusion age could be determined from the present dataset, it could be constrained by some age data of the host charnockite gneiss and Alkaline rocks of the adjacent Prakasam Province. Assuming an intrusion age of similar to 1.3 Ga, Sr-Nd isotopic composition of the dykes indicate that they preserved time-integrated LREE enrichment. In view of the chemical signatures of OIB source, the mafic dykes could as well be related to continental rifting, around 1.3 Ga, which may have been initiated by intra-plate volcanism.
Resumo:
One of the main questions on Neoproterozoic geology regards the extent and dynamics of the glacial systems that are recorded in all continents. We present evidence for short transport distances and localized sediment sources for the Bebedouro Formation, which records Neoproterozoic glaciomarine sedimentation in the central-eastern Sao Francisco Craton (SFC), Brazil. New data are presented on clast composition, based on point counting in thin section and SHRIMP dating of pebbles and detrital zircon. Cluster analysis of clast compositional data revealed a pronounced spatial variability of clast composition on diamictite indicating the presence of individual glaciers or ice streams feeding the basin. Detrital zircon ages reveal distinct populations of Archean and Palaeoproterozoic age. The youngest detrital zircon dated at 874 +/- 9 Ma constrains the maximum depositional age of these diamictites. We interpret the provenance of the glacial diamictites to be restricted to sources inside the SFC, suggesting deposition in an environment similar to ice streams from modern, high latitude glaciers.
Resumo:
We used the fabrics of two granite plutons and U/Pb (SHRIMP) zircon ages to constrain the tectonic evolution of the E-trending Patos shear zone (Borborema Province, NE Brazil). The pre-tectonic Teixeira batholith consists of an amphibole leucogranite locally with aegirine-augite. Zircons from a syenogranite yielded crystallization ages of 591 +/- 5 Ma. The batholith fabrics were determined by anisotropy of magnetic susceptibility (AMS) and mineral shape preferred orientation. The fabrics support pre-transcurrent batholith emplacement, as evidenced by: (i) magmatic/magnetic fabrics in low susceptibility (<0.35 mSI) leucogranites highly discordant to the regional host rock structure, and (ii) concordant magnetic fabrics restricted to high susceptibility (>1 mSI) corridors connected to shear zones branching off from Patos. One of these satellite shear zones controlled the syntectonic emplacement of the Serra Redonda pluton, which yields a crystallization age of 576 +/- 3 Ma. This late shearing event marks the peak regional deformation that, south of Patos, was coupled to crustal shortening nearly perpendicular to the shear belt. The chronology of the deformational events indicates that the major shear zones of the eastern Borborema are late structures active after the crustal blocks amalgamated. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The Punta del Este Terrane (eastern Uruguay) lies in a complex Neoproterozoic (Brasiliano/Pan-African) orogenic zone considered to contain a suture between South American terranes to the west of Major Gercino-Sierra Ballena Suture Zone and eastern African affinities terranes. Zircon cores from Punta del Este Terrane basement orthogneisses have U-Pb ages of ca. 1,000 Ma, which indicate an lineage with the Namaqua Belt in Southwestern Africa. U-Pb zircon ages also provide the following information on the Punta del Este terrane: the orthogneisses containing the ca. 1,000 Ma inheritance formed at ca. 750 Ma; in contrast to the related terranes now in Africa, reworking of the Punta del Este Terrane during Brasiliano/Pan-African orogenesis was very intense, reaching granulite facies at ca. 640 Ma. The termination of the Brasiliano/Pan-African orogeny is marked by formation of acid volcanic and volcanoclastic rocks at ca. 570 Ma (Sierra de Aguirre Formation), formation of late sedimentary basins (San Carlos Formation) and then intrusion at ca. 535 Ma of post-tectonic granitoids (Santa Teresa and Jos, Ignacio batholiths). The Punta del Este Terrane and unrelated western terranes represented by the Dom Feliciano Belt and the Rio de La Plata Craton were in their present positions by ca. 535 Ma.
Resumo:
The Patino Formation sandstones, which crop out in Aregua neighborhood in Eastern Paraguay and show columnar joints near the contact zone with a nephelinite dyke, have as their main characteristics the high proportion of syntaxial quartz overgrowth and a porosity originated from different processes, initially by dissolution and later by partial filling and fracturing. Features like the presence of floating grains in the syntaxial cement, the transitional interpenetrative contact between the silica-rich cement and grains as well as the intense fracture porosity are strong indications that the cement has been formed by dissolution and reprecipitation of quartz from the framework under the effect of thermal expansion followed by rapid contraction. The increase of the silica-rich cement towards the dyke in association with the orthogonal disposition of the columns relative to dyke walls are indicative that the igneous body may represent the main heat source for the interstitial aqueous solutions previously existing in the sediments. At macroscopic scale, the increasing of internal tensions in the sandstones is responsible for the nucleation of polygons, leading to the individualization of prisms, which are interconnected by a system of joints, formed firstly on isotherm surfaces of low temperature and later on successive adjacent planes towards the dyke heat source.
Resumo:
The metamorphosed banded iron formation from the Nogoli Metamorphic Complex of western Sierra de San Luis, Eastern Sierras Pampeanas of Argentina (Nogoli area, 32 degrees 55`S-66 degrees 15`W) is classified as an oxide facies iron formation of Algoma Type, with a tectonic setting possibly associated with an island arc or back arc, on the basis of field mapping, mineral and textural arrangements and whole rock geochemical features. The origin of banded iron formation is mainly related to chemical precipitation of hydrogenous sediments from seawater in oceanic environments. The primary chemical precipitate is a result of solutions that represent mixtures of seawater and hydrothermal fluids, with significant dilution by maficultramafic volcanic and siliciclastic materials. Multi-stage T(DM) model ages of 1670, 1854 and 1939 Ma and positive, mantle-like xi Nd((1502)) values of +3.8, +1.5 and +0.5 from the banded iron formation are around the range of those mafic to ultramafic meta-volcanic rocks of Nogoli Metamorphic Complex, which are between 1679 and 1765 Ma and +2.64 and +3.68, respectively. This Sm and Nd isotopic connection suggests a close genetic relationship between ferruginous and mafic-ultramafic meta-volcanic rocks, as part of the same island arc or back arc setting. A previous Sm-Nd whole rock isochron of similar to 1.5 Ga performed on mafic-ultramafic meta-volcanic rocks led to the interpretation that chemical sedimentation as old as Mesoproterozoic is possible for the banded iron formation. A clockwise P-T path can be inferred for the regional metamorphic evolution of the banded iron formation, with three distinctive trajectories: (1) Relict prograde M(1)-M(3) segment with gradual P and T increase from greenschist facies at M(1) to amphibolite facies at M(3). (2) Peak P-T conditions at high amphibolite-low granulite facies during M(4). (3) Retrograde counterpart of M(4), that returns from amphibolite facies and stabilizes at greenschist facies during M(5). Each trajectory may be regarded as produced by different tectonic events related to the Pampean? (1) and the Famatinian (2 and 3) orogenies, during the Early to Middle Paleozoic. The Nogoli Metamorphic Complex is interpreted as part of a greenstone belt within the large Meso- to Neoproterozoic Pampean Terrane of the Eastern Sierras Pampeanas of Argentina. (C) 2009 Elsevier Ltd. All rights reserved.