944 resultados para East Asian summer monsoon
Resumo:
The Indian Summer Monsoon (ISM) is an inter-hemispheric and highly variable ocean-atmosphere-land interaction that directly affects the densely populated Indian subcontinent. Here, we present new records of palaeoceanographic variability that span the last 500,000 years from the eastern equatorial Indian Ocean, a relatively under-sampled area of ISM influence. We have generated carbon and oxygen stable isotope records from three foraminiferal species from Ocean Drilling Program Site 758 (5°N, 90°E) to investigate the oceanographic history of this region. We interpret our resultant Dd18O (surface-thermocline) record of upper water-column stratification in the context of past ISM variability, and compare orbital phase relationships in our Site 758 data to other climate and monsoon proxies in the region. Results suggest that upper water-column stratification at Site 758, which is dominated by variance at precession and half-precession frequencies (23, 19 and 11 ka), is forced by both local (5°N) insolation and ISM winds. In the precession (23 ka) band, stratification minima at Site 758 lag northern hemisphere summer insolation maxima (precession minima) by 9 ka, which is consistent with Arabian Sea ISM phase estimates and suggests a common wind forcing in both regions. This phase implicates a strong sensitivity to both ice volume and southern hemisphere insolation forcing via latent heat export from the southern subtropical Indian Ocean. Additionally, we find evidence of possible overprinting of millennial-scale events during glacial terminations in our stratification record, which suggests an influence of remote abrupt climate events on ISM dynamics.
Resumo:
A reconstruction of northwest African summer monsoon strength during the cold marine isotopic stage (MIS) 6 indicates a link to the seasonal migration of the Intertropical Convergence Zone (ITCZ). High-resolution studies of eolian dust supply and sea surface temperature recorded in marine core MD03-2705, on the Mauritanian margin, provide a better understanding about the penultimate glacial history of northwestern African aridity/humidity and upwelling coastal activity. Today, site MD03-2705 experiences increased upwelling and dust flux during the winter months, when the ITCZ is in a southerly position. Analyses of foraminifera isotopic composition suggest that during MIS 6.5 (180-168 ka) the average position of the ITCZ migrated north, marked by an increase in the strength of the summer monsoon, which decreased eolian dust transport and the coastal upwelling activity. The northward migration is in phase with a specific orbital combination of a low precessional index with a high obliquity signal. High-resolution analysis of stable isotopes (d18O and d13C) and microscale resolution geochemical (Ti/Al and quartz grain counts) determinations reveal that the transition between monsoonal humid (MIS 6.5) and dry (MIS 6.4) conditions has occurred in less than 1.3 ka. Such rapid changes suggest a nonlinear link between the African monsoonal rainfall system and environmental changes over the continent. This study provides new insights about the influence of vegetation and oceanic temperature feedbacks on the onset of African summer monsoon and demonstrates that, during the penultimate glacial period, changes in tropical dynamics had regional and global impacts.
Resumo:
Bulk mineralogy of the terrigenous fraction of 99 samples from ODP Site 722 on the Owen Ridge, western Arabian Sea, has been determined by x-ray diffraction, using an internal standard method. The sampling interval, approximately 4.3 k.y., provides a detailed mineralogic record for the past 500 k.y. Previous studies have identified important modern continental sediment sources and the mineral assemblages presently derived from each. These studies have also demonstrated that most of this material is supplied by southwest and northwest winds during the summer monsoon. A variety of marine and terrestrial records and general circulation model (GCM) simulations have indicated the importance of monsoonal circulation during the Pleistocene and Holocene and have demonstrated increased aridity during glacial times and increased humidity during inter glacials. The mineralogic data generated here were used to investigate variations in source area weathering conditions during these environmental changes. Terrigenous minerals present include smectite, illite, palygorskite, kaolinite, chlorite, quartz, plagioclase feldspar, and dolomite. This mineralogy is consistent with the compositions of source areas presently supplying sediment to the Arabian Sea. An R-mode factor analysis has identified four mineral assemblages present throughout the past 500 k.y.: quartz/chlorite/dolomite (Factor 1), kaolinite/plagioclase/illite (Factor 2), smectite (Factor 3), and palygorskite/dolomite (Factor 4). Chlorite, illite, and palygorskite are extremely susceptible to chemical weathering, and a spectral comparison of these factors with the eolian mass accumulation rate (MAR) record from Hole 722B (an index of dust source area aridity) indicates that Factors 1, 2, and 4 are directly related to changes in aridity. Because of these characteristics, Factors 1,2, and 4 are interpreted to originate from arid source regions. Factor 3 is interpreted to record more humid source conditions. Time-series of scores for the four factors are dominated by short-term (10-100 k.y.) variability, and do not correlate well to glacial/interglacial fluctuations in the time domain. These characteristics suggest that local climatic shifts were complex, and that equilibrium weathering assemblages did not develop immediately after climatic change. Spectral analysis of factor scores identifies peaks at or near the primary Milankovitch frequencies for all factors. Factor 1 (quartz/chlorite/dolomite), Factor 2 (kaolinite/plagioclase/illite), and Factor 4 (illite/palygorskite) are coherent and in phase with the MAR record over the 23, 41, and 100 k.y. bands, respectively. The reasons for coherency at single Milankovitch frequencies are not known, but may include differences in the susceptibilities of minerals to varying time scales of weathering and/or preferential development of suitable continental source environments by climatic changes at the various Milankovitch frequencies.
Resumo:
The astronomical timescale of the Eastern Mediterranean Plio-Pleistocene builds on tuning of sapropel layers to Northern Hemisphere summer insolation maxima. A 3000-year precession lag has become instrumental in the tuning procedure as radiocarbon dating revealed that the midpoint of the youngest sapropel, S1, in the early Holocene occurred approximately 3000 years after the insolation maximum. The origin of the time lag remains elusive, however, because sapropels are generally linked to maximum African monsoon intensities and transient climate modeling results indicate an in-phase behavior of the African monsoon relative to precession forcing. Here we present new high-resolution records of bulk sediment geochemistry and benthic foraminiferal oxygen isotopes from ODP Site 968 in the Eastern Mediterranean. We show that the 3000-year precession time lag of the sapropel midpoints is consistent with (1) the global marine isotope chronology, (2) maximum (monsoonal) precipitation conditions in the Mediterranean region and China derived from radiometrically dated speleothem records, and (3) maximum atmospheric methane concentrations in Antarctica ice cores. We show that the time lag relates to the occurrence of precession-paced North Atlantic cold events, which systematically delayed the onset of strong boreal summer monsoon intensity. Our findings may also explain a non-stationary behavior of the African monsoon over the past 3 million years due to more frequent and intensive cold events in the Late Pleistocene.
Resumo:
Concerns about the regional impact of global climate change in a warming scenario have highlighted the gaps in our understanding of the Indian Summer Monsoon (ISM, also referred to as the Indian Ocean summer monsoon) and the absence of long term palaeoclimate data from the central Indian core monsoon zone (CMZ). Here we present the first high resolution, well-dated, multiproxy reconstruction of Holocene palaeoclimate from a 10 m long sediment core raised from the Lonar Lake in central India. We show that while the early Holocene onset of intensified monsoon in the CMZ is similar to that reported from other ISM records, the Lonar data shows two prolonged droughts (PD, multidecadal to centennial periods of weaker monsoon) between 4.6-3.9 and 2-0.6 cal?ka. A comparison of our record with available data from other ISM influenced sites shows that the impact of these PD was observed in varying degrees throughout the ISM realm and coincides with intervals of higher solar irradiance. We demonstrate that (i) the regional warming in the Indo-Pacific Warm Pool (IPWP) plays an important role in causing ISM PD through changes in meridional overturning circulation and position of the anomalous Walker cell; (ii) the long term influence of conditions like El Niño-Southern Oscillation (ENSO) on the ISM began only ca. 2 cal?ka BP and is coincident with the warming of the southern IPWP; (iii) the first settlements in central India coincided with the onset of the first PD and agricultural populations flourished between the two PD, highlighting the significance of natural climate variability and PD as major environmental factors affecting human settlements.
Paleoclimate reconstruction from Miocene macroflora in Kazakhstan compiled from various publications
Resumo:
25 datasets (13 fossil leaf and pollen assemblages, 12 quantitative palaeoclimatic datasets) are provided in order to analyse Early Miocene palaeoclimate in Kazakhstan. The rich fossil record in Kazakhstan documents that during the Oligocene and Early Miocene this area in Central Eurasia was densely forested with warm-temperate deciduous trees and shrubs of the so-called "Turgayan flora". 29 fossil floras from 13 localities have been selected for a quantitative analysis of the Aquitanian (early Early Miocene) climate situation in Kazakhstan. The assessed mean annual temperatures generally place around 15 °C, while values of mean annual precipitation are of about 1000 mm. In combination with several other climate parameters estimated (temperatures of warmest and coldest months, precipitation rates of wettest, driest and warmest months), these data reflect uniform climatic conditions over several thousands of square kilometres. Data of temperature parameters show slight spatial differentiations, with generally cooler mean annual temperatures and higher seasonality (i.e. warmer summers and colder winters) in the north-eastern part of the study area compared with the south-western area around Lake Aral. As compared with palaeoclimate estimates for the European and East Asian Aquitanian, the central part of the Eurasian continent reveals evident signals of higher seasonality and slightly increased continentality.
Resumo:
Bibliography: p. 133-140.
Resumo:
Includes: Eishōin Nichikan Shōnin ryakuden at end.