917 resultados para EXTRACELLULAR-MATRIX PROTEINS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
SynopsisBackgroundCellulite refers to changes in skin relief on the thighs and buttocks of women, with a prevalence of 80-90%, causing dissatisfaction and search for treatment. Etiopathogenesis is multifactorial, as follows: herniation of the hypodermis towards the dermis, facilitated by perpendicular fibrous septa, changes in the dermal extracellular matrix, decreased adiponectin, genetic polymorphism, microcirculation alterations and inflammatory process. There are numerous therapeutic approaches, with little evidence of effectiveness. The long-wave infrared (LWIR) radiation interacts with water, improves microcirculation and stimulates metabolic processes. To date, the use of tissues with potential reflection of LWIR radiation has not been systematically investigated as adjuvant treatment for cellulite.ObjectiveTo investigate the efficacy and safety of the treatment of cellulite through the use of compression stockings made with thread reflecting LWIR radiation.Patients and methodsClinical study of therapeutic intervention, controlled and double-blind, including 30 women, aging from 25 to 40years, with cellulite of grades II and III on the thighs and buttocks who used compression stockings, pantyhose model, made with reflector thread of LWIR radiation, on only one randomized side. Women under other treatments for cellulite and with venous and/or blood insufficiencies were excluded. Evaluation of efficacy by clinical parameters, photographs, Dermatology Life Quality Index (DLQI), cutometry and high frequency ultrasonography and security by observation of adverse events and venous EcoDoppler recordings.ResultsDLQI scores showed significant reduction; the two-dimensional high-frequency ultrasonography showed an insignificant increase in dermal echogenicity as well as other efficacy parameters demonstrated no or slight improvement, with no differences between the sides exposed or not to LWIR; and there were no severe adverse events.ConclusionCompression stockings, with or without thread reflector of LWIR, showed slight effects in the appearance of cellulite, but the treatment determined a positive impact on women quality of life.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Type 2 diabetes and obesity are increasing worldwide and linked to periodontitis, a chronic disease which is characterized by the irreversible destruction of the tooth-supporting tissues, that is, periodontium. The mechanisms underlying the association of diabetes mellitus and obesity with periodontal destruction and compromised periodontal healing are not well understood, but decreased plasma levels of adiponectin, as found in diabetic and obese individuals, might be a critical mechanistic link. The aim of this in vitro study was to examine the effects of adiponectin on periodontal ligament (PDL) cells under normal and regenerative conditions, and to study the regulation of adiponectin and its receptors in these cells. Adiponectin stimulated significantly the expression of growth factors and extracellular matrix, proliferation, and in vitro wound healing, reduced significantly the constitutive tumor necrosis factor-alpha expression, and caused a significant upregulation of its own expression. The beneficial actions of enamel matrix derivative on a number of PDL cell functions critical for periodontal regeneration were partially enhanced by adiponectin. The periodontopathogen Porphyromonas gingivalis inhibited the adiponectin expression and stimulated the expression of its receptors. In conclusion, reduced levels of adiponectin, as found in type 2 diabetes and obesity, may compromise periodontal health and healing.
Resumo:
Stemming from in vitro and in vivo pre-clinical and human models, tissue-engineering-based strategies continue to demonstrate great potential for the regeneration of the pulp-dentin complex, particularly in necrotic, immature permanent teeth. Nanofibrous scaffolds, which closely resemble the native extracellular matrix, have been successfully synthesized by various techniques, including but not limited to electrospinning. A common goal in scaffold synthesis has been the notion of promoting cell guidance through the careful design and use of a collection of biochemical and physical cues capable of governing and stimulating specific events at the cellular and tissue levels. The latest advances in processing technologies allow for the fabrication of scaffolds where selected bioactive molecules can be delivered locally, thus increasing the possibilities for clinical success. Though electrospun scaffolds have not yet been tested in vivo in either human or animal pulpless models in immature permanent teeth, recent studies have highlighted their regenerative potential both from an in vitro and in vivo (i.e., subcutaneous model) standpoint. Possible applications for these bioactive scaffolds continue to evolve, with significant prospects related to the regeneration of both dentin and pulp tissue and, more recently, to root canal disinfection. Nonetheless, no single implantable scaffold can consistently guide the coordinated growth and development of the multiple tissue types involved in the functional regeneration of the pulp-dentin complex. The purpose of this review is to provide a comprehensive perspective on the latest discoveries related to the use of scaffolds and/or stem cells in regenerative endodontics. The authors focused this review on bioactive nanofibrous scaffolds, injectable scaffolds and stem cells, and pre-clinical findings using stem-cell-based strategies. These topics are discussed in detail in an attempt to provide future direction and to shed light on their potential translation to clinical settings.
Resumo:
Articular cartilage is the structure that coats the bone ends in regions where two bones are articulated, allowing movement. It has inefficient intrinsic and extrinsic mechanisms of repair, usually resulting in fibrocartilage formation after injury. Such repair have lower strength, stiffness and usability features when compared to hyaline cartilage. The mesenchymal stem cells have the potential to regenerate tissue without the production of scar, and because of this feature it is well studied. But to have its maximum chondrogenic potential, it is necessary to use scaffolds and growth factors. Biomaterials play the role of scaffold for the cells allowing them to become attached, grow and produce extracellular matrix, leading to formation of repair with hyaline cartilage. In this sense, the purpose of this study is to provide information on the various studies using cell therapy and / or biomaterials to produce hyaline cartilage
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Cirurgia Veterinária - FCAV