944 resultados para ERYTHROCYTE INVASION
Resumo:
Infection by the protozoan parasite Toxoplasma gondii is widely prevalent in humans and animals. To prevent human infection, all meat should be well cooked before consumption, since the parasite is present in skeletal muscle. In this context, the use of skeletal muscle cells (SkMCs) as a cellular model opens up new approaches to investigate T. gondii-host cell interactions. Immunofluorescent detection of proteins that are stage-specific for bradyzoites indicated that complete cystogenesis of T. gondii in in vitro cultures of SkMCs occurs after 96 h of infection. Ultrastructural analysis showed that, after 48 h of interaction, there were alterations on the parasitophorous vacuole membrane, including greater thickness and increased electron density at the inner face of the membrane. The present study demonstrates the potential use of primary cultures of SkMCs to evaluate different molecular aspects of T. gondii invasion and cystogenesis and presents a promising in vitro model for the screening of drug activities toward tissue cysts and bradyzoites.
Resumo:
Although the predilection for Toxoplasma gondii to form cysts in the nervous system and skeletal and heart muscles has been described for more than fifty years, skeletal muscle cells (SkMCs) have not been explored as a host cell type to study the Toxoplasma-host cell interaction and investigate the intracellular development of the parasite. Morphological aspects of the initial events in the Toxoplasma-SkMC interaction were analysed and suggest that there are different processes of protozoan adhesion and invasion and of the subsequent fate of the parasite inside the parasitophorous vacuole (PV). Using scanning electron microscopy,Toxoplasma tachyzoites from the mouse-virulent RH strain were found to be attached to SkMCs by the anterior or posterior region of the body, with or without expansion of the SkMC membrane. This suggests that different types of parasite internalization occurred. Asynchronous multiplication and differentiation of T. gondii were observed. Importantly, intracellular parasites were seen to display high amounts of amylopectin granules in their cytoplasm, indicating that tachyzoites of the RH strain were able to differentiate spontaneously into bradyzoites in SkMCs. This stage conversion occurred in approximately 3% of the PVs. This is particularly intriguing as tachyzoites of virulent Toxoplasma strains are not thought to be prone to cyst formation. We discuss whether biological differences in host cells are crucial to Toxoplasma stage conversion and suggest that important questions concerning the host cell type and its relevance in Toxoplasma differentiation are still unanswered.
Resumo:
Steroids from Solanum nudum (SNs) have demonstrated antiplasmodial activity against erythrocytic stages of the Plasmodium falciparum strain FCB-2. It is well known that steroids can alter the membrane function of erythrocytes. Thus, we assessed alterations in the membranes of uninfected red blood cells, the parasite invasiveness and the solute-induced lysis of parasitised red blood cells (pRBCs). induced by SNs. We found that most merozoites were unable to invade SN-treated erythrocytes. However, transmission electron microscopy revealed no effect on the morphology of uninfected erythrocytes treated with either SN2 or diosgenone and neither SN induced haemolysis of uninfected erythrocytes. SN2 and SN4 inhibited isosmotic sorbitol and alanine-induced haemolysis of pRBCs. In contrast, diosgenone and SN1 did not inhibit solute-induced haemolysis. The inhibition of solute-induced lysis of parasitised erythrocytes by SN2 and SN4 suggest an action of these SNs on new permeability pathways of pRBCs.
Resumo:
The association of the pellicle with cytoskeletal elements in Toxoplasma gondii allows this parasite to maintain its mechanical integrity and makes possible its gliding motility and cell invasion. The inner membrane complex (IMC) resembles the flattened membrane sacs observed in free-living protozoa and these sacs have been found to associate with cytoskeletal proteins such as articulins. We used immunofluorescence microscopy to characterise the presence and distribution of plateins, a sub-family of articulins, in T. gondii tachyzoites. A dispersed labelling of the whole protozoan body was observed. Electron microscopy of detergent-extracted cells revealed the presence of a network of 10 nm filaments distributed throughout the parasite. These filaments were labelled with anti-platein antibodies. Screening the sequenced T. gondii genome, we obtained the sequence of an IMC predicted protein with 25% identity and 42% similarity to the platein isoform alpha 1 present in Euplotes aediculatus, but with 42% identity and 55% similarity to that found in Euglena gracilis, suggesting strong resemblance to articulins.
Resumo:
Objective. Mandibular osteoradionecrosis (ORN) is a serious complication of radiotherapy (RT) in head and neck cancer patients. The aim of this study was to analyze the incidence of and risk factors for mandibular ORN in squamous cell carcinoma (SCC) of the oral cavity and oropharynx.Study Design. Case series with chart review.Setting. University tertiary care center for head and neck oncology.Subjects and Methods. Seventy-three patients treated for stage I to IV SCC of the oral cavity and oropharynx between 2000 and 2007, with a minimum follow-up of 2 years, were included in the study. Treatment modalities included both RT with curative intent and adjuvant RT following tumor surgery. The log-rank test and Cox model were used for univariate and multivariate analyses.Results. The incidence of mandibular ORN was 40% at 5 years. Using univariate analysis, the following risk factors were identified: oral cavity tumors (P < .01), bone invasion (P < .02), any surgery prior to RT (P < .04), and bone surgery (P < .0001). By multivariate analysis, mandibular surgery proved to be the most important risk factor and the only one reaching statistical significance (P < .0002).Conclusion. Mandibular ORN is a frequent long-term complication of RT for oral cavity and oropharynx cancers. Mandibular surgery before irradiation is the only independent risk factor. These aspects must be considered when planning treatment for these tumors.
Resumo:
Despite the relevant achievements in the control of the main Chagas disease vectors Triatoma infestans and Rhodnius prolixus, several factors still promote the risk of infection. The disease is a real threat to the poor rural regions of several countries in Latin America. The current situation in Brazil requires renewed attention due to its high diversity of triatomine species and to the rapid and drastic environmental changes that are occurring. Using the biology, behaviour and diversity of triatomines as a basis for new strategies for monitoring and controlling the vectorial transmission are discussed here. The importance of ongoing long-term monitoring activities for house infestations by T. infestans, Triatoma brasiliensis, Panstrongylus megistus, Triatoma rubrovaria and R. prolixus is also stressed, as well as understanding the invasion by sylvatic species. Moreover, the insecticide resistance is analysed. Strong efforts to sustain and improve surveillance procedures are crucial, especially when the vectorial transmission is considered interrupted in many endemic areas.
Resumo:
CONCLUSION: There are several factors that influence the final outcome when treating oral squamous cell carcinoma (OSCC). Invasive front phenomena and more importantly their clinicopathological translation can have a direct impact on survival, and subsequently on the decision for an adjuvant treatment. OBJECTIVES: In recent years, the concept of tumor-host interaction has been the subject of substantial efforts in cancer research. Tumoral behavior may be better understood when studying the changes occurring at the tumor-host interface. This study evaluated the influence of several clinicopathological features on the outcome of OSCCs. METHODS: The clinical records and pathology specimens of 54 patients with OSCC treated by primary resection were reviewed retrospectively. The pathologic features reviewed were: invasive front grading (IFG), stromal reaction, lymphovascular invasion (LVI), perineural invasion (PNI), margin status, and depth of invasion. RESULTS: High IFGs had a significant relationship with pT status and pN status. High IFGs were strongly correlated with nodal metastases (odds ratio (OR) = 4.77; confidence interaval (CI) = 1.37-16.64). Concerning survival, IFG had a strong impact on disease-free survival in patients treated unimodally, as did the depth of invasion in the same group. Lymphovascular involvement was found to have a negative impact on overall survival in patients treated multimodally.
Resumo:
Since the discovery of Trypanosoma cruzi and the brilliant description of the then-referred to "new tripanosomiasis" by Carlos Chagas 100 years ago, a great deal of scientific effort and curiosity has been devoted to understanding how this parasite invades and colonises mammalian host cells. This is a key step in the survival of the parasite within the vertebrate host, and although much has been learned over this century, differences in strains or isolates used by different laboratories may have led to conclusions that are not as universal as originally interpreted. Molecular genotyping of the CL-Brener clone confirmed a genetic heterogeneity in the parasite that had been detected previously by other techniques, including zymodeme or schizodeme (kDNA) analysis. T. cruzi can be grouped into at least two major phylogenetic lineages: T. cruzi I, mostly associated with the sylvatic cycle and T. cruzi II, linked to human disease; however, a third lineage, T. cruziIII, has also been proposed. Hybrid isolates, such as the CL-Brener clone, which was chosen for sequencing the genome of the parasite (Elias et al. 2005, El Sayed et al. 2005a), have also been identified. The parasite must be able to invade cells in the mammalian host, and many studies have implicated the flagellated trypomastigotes as the main actor in this process. Several surface components of parasites and some of the host cell receptors with which they interact have been described. Herein, we have attempted to identify milestones in the history of understanding T. cruzi- host cell interactions. Different infective forms of T. cruzi have displayed unexpected requirements for the parasite to attach to the host cell, enter it, and translocate between the parasitophorous vacuole to its final cytoplasmic destination. It is noteworthy that some of the mechanisms originally proposed to be broad in function turned out not to be universal, and multiple interactions involving different repertoires of molecules seem to act in concert to give rise to a rather complex interplay of signalling cascades involving both parasite and cellular components.
Resumo:
Frequent reports on outbreaks of acute Chagas' disease by ingestion of food contaminated with parasites from triatomine insects illustrate the importance of this mode of transmission. Studies on oral Trypanosoma cruzi infection in mice have indicated that metacyclic trypomastigotes invade the gastric mucosal epithelium. A key molecule in this process is gp82, a stage-specific surface glycoprotein that binds to both gastric mucin and to target epithelial cells. By triggering Ca2+ signalling, gp82 promotes parasite internalisation. Gp82 is relatively resistant to peptic digestion at acidic pH, thus preserving the properties critical for oral infection. The infection process is also influenced by gp90, a metacyclic stage-specific molecule that negatively regulates the invasion process. T. cruzi strains expressing high gp90 levels invade cells poorly in vitro. However, their infectivity by oral route varies considerably due to varying susceptibilities of different gp90 isoforms to peptic digestion. Parasites expressing pepsin-susceptible gp90 become highly invasive against target cells upon contact with gastric juice. Such is the case of a T. cruzi isolate from an acute case of orally acquired Chagas' disease; the gp90 from this strain is extensively degraded upon short period of parasite permanence in the gastric milieu. If such an exacerbation of infectivity occurs in humans, it may be responsible for the severity of Chagas' disease reported in outbreaks of oral infection.
Resumo:
Enteroinvasive Escherichia coli (EIEC) and Shigellaspp cause bacillary dysentery in humans by invading and multiplying within epithelial cells of the colonic mucosa. Although EIEC and Shigellashare many genetic and biochemical similarities, the illness caused by Shigellais more severe. Thus, genomic and structure-function molecular studies on the biological interactions of these invasive enterobacteria with eukaryotic cells have focused on Shigella rather than EIEC. Here we comparatively studied the interactions of EIEC and of Shigella flexneriwith cultured J774 macrophage-like cells. We evaluated several phenotypes: (i) bacterial escape from macrophages after phagocytosis, (ii) macrophage death induced by EIEC and S. flexneri, (iii) macrophage cytokine expression in response to infection and (iv) expression of plasmidial (pINV) virulence genes. The results showed thatS. flexneri caused macrophage killing earlier and more intensely than EIEC. Both pathogens induced significant macrophage production of TNF, IL-1 and IL-10 after 7 h of infection. Transcription levels of the gene invasion plasmid antigen-C were lower in EIEC than in S. flexneri throughout the course of the infection; this could explain the diminished virulence of EIEC compared to S. flexneri.
Resumo:
BACKGROUND Alterations in the cadherin-catenin adhesion complexes are involved in tumor initiation, progression and metastasis. However, the functional implication of distinct cadherin types in breast cancer biology is still poorly understood. METHODS To compare the functional role of E-cadherin and P-cadherin in invasive breast cancer, we stably transfected these molecules into the MDA-MB-231 cell line, and investigated their effects on motility, invasion and gene expression regulation. RESULTS Expression of either E- and P-cadherin significantly increased cell aggregation and induced a switch from fibroblastic to epithelial morphology. Although expression of these cadherins did not completely reverse the mesenchymal phenotype of MDA-MB-231 cells, both E- and P-cadherin decreased fibroblast-like migration and invasion through extracellular matrix in a similar way. Moreover, microarray gene expression analysis of MDA-MB-231 cells after expression of E- and P-cadherins revealed that these molecules can activate signaling pathways leading to significant changes in gene expression. Although the expression patterns induced by E- and P-cadherin showed more similarities than differences, 40 genes were differentially modified by the expression of either cadherin type. CONCLUSION E- and P-cadherin have similar functional consequences on the phenotype and invasive behavior of MDA-MB-231 cells. Moreover, we demonstrate for the first time that these cadherins can induce both common and specific gene expression programs on invasive breast cancer cells. Importantly, these identified genes are potential targets for future studies on the functional consequences of altered cadherin expression in human breast cancer.
Resumo:
We have previously demonstrated selection favoring the JG strain of Trypanosoma cruziin hearts of BALB/c mice that were chronically infected with an equal mixture of the monoclonal JG strain and a clone of the Colombian strain, Col1.7G2. To evaluate whether cell invasion efficiency drives this selection, we infected primary cultures of BALB/c cardiomyocytes using these same T. cruzi populations. Contrary to expectation, Col1.7G2 parasites invaded heart cell cultures in higher numbers than JG parasites; however, intracellular multiplication of JG parasites was more efficient than that of Col1.7G2 parasites. This phenomenon was only observed for cardiomyocytes and not for cultured Vero cells. Double infections (Col1.7G2 + JG) showed similar results. Even though invasion might influence tissue selection, our data strongly suggest that intracellular development is important to determine parasite tissue tropism.
Resumo:
Genetic analysis of fission yeast suggests a role for the spHop2-Mnd1 proteins in the Rad51 and Dmc1-dependent meiotic recombination pathways. In order to gain biochemical insights into this process, we purified Schizosaccharomyces pombe Hop2-Mnd1 to homogeneity. spHop2 and spMnd1 interact by co-immunoprecipitation and two-hybrid analysis. Electron microscopy reveals that S. pombe Hop2-Mnd1 binds single-strand DNA ends of 3'-tailed DNA. Interestingly, spHop2-Mnd1 promotes the renaturation of complementary single-strand DNA and catalyses strand exchange reactions with short oligonucleotides. Importantly, we show that spHop2-Mnd1 stimulates spDmc1-dependent strand exchange and strand invasion. Ca(2+) alleviate the requirement for the order of addition of the proteins on DNA. We also demonstrate that while spHop2-Mnd1 affects spDmc1 specifically, mHop2 or mHop2-Mnd1 stimulates both the hRad51 and hDmc1 recombinases in strand exchange assays. Thus, our results suggest a crucial role for S. pombe and mouse Hop2-Mnd1 in homologous pairing and strand exchange and reveal evolutionary divergence in their specificity for the Dmc1 and Rad51 recombinases.
Resumo:
Parasites remain competent invaders of host immunity. Their invasion strategies have proven to impact immunorelevant genes leading to diversity among gene families. We focussed on signal transducer and activator of transcription (STAT6) factor that plays a fundamental role in signal transduction and activation of transcription. Recent studies have highlighted the role of STAT6 variants in control of infection levels. We identified and investigated regulatory single nucleotide polymorphisms (SNPs) in the promoter regions of the STAT6 gene in a group of Gabonese individuals exposed to a variety of parasitic infections. Three promoter variants were identified in 40 individual subjects. We further validated these promoter variants for their allelic gene expression using transient transfection assays. One promoter variant, rs3024944 (G/C), revealed an altered expression of the marker gene. The identification of function-altering SNPs in the promoter may facilitate studying parasite susceptibility in association studies.
Resumo:
BACKGROUND: Extension of retinoblastoma cells into the posterior chamber is a criterion for group E according to the international classification of intraocular retinoblastoma. Currently, the anterior extension of retinoblastoma is based on the presence of tumour cells in the anterior chamber assessed by biomicroscopy. AIM: To determine the value of ultrasound biomicroscopy (UBM) in the assessment of posterior chamber involvement in advanced retinoblastoma. METHODS: Retrospective review of all retinoblastoma cases enucleated at the Jules Gonin Eye Hospital from January 1996 to December 2009 for which UBM (35 MHz) evaluation was available. The patients' records were reviewed for patient and tumour features and histopathological findings. UBM findings were compared with histopathological features. RESULTS: UBM documentation was available in 31 cases. Retinoblastoma was detected by UBM in the posterior chamber in 18 cases and was absent in 13 cases while histopathological analysis demonstrated its presence in the posterior chamber in 22 cases and its absence in 9 cases. Among the 18 UBM-positive cases, 7 had biomicroscopic detectable involvement of the anterior chamber. There was a significant correlation between echodensities consistent with retinoblastoma on UBM in the posterior chamber and histopathological tumorous involvement of the posterior chamber (p=0.0001). The sensitivity of UBM in the assessment of posterior chamber invasion by retinoblastoma was 81% and the specificity was 100%. CONCLUSION: In selected cases of advanced retinoblastoma, UBM appears to represent a valuable tool in the precise evaluation of anterior extension of disease, with good sensitivity and specificity for the assessment of posterior chamber involvement. UBM may provide useful criteria governing the indication for enucleation.