994 resultados para ENTERPRISE NETWORK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manufacturing industry has been always facing challenge to improve the production efficiency, product quality, innovation ability and struggling to adopt cost-effective manufacturing system. In recent years cloud computing is emerging as one of the major enablers for the manufacturing industry. Combining the emerged cloud computing and other advanced manufacturing technologies such as Internet of Things, service-oriented architecture (SOA), networked manufacturing (NM) and manufacturing grid (MGrid), with existing manufacturing models and enterprise information technologies, a new paradigm called cloud manufacturing is proposed by the recent literature. This study presents concepts and ideas of cloud computing and cloud manufacturing. The concept, architecture, core enabling technologies, and typical characteristics of cloud manufacturing are discussed, as well as the difference and relationship between cloud computing and cloud manufacturing. The research is based on mixed qualitative and quantitative methods, and a case study. The case is a prototype of cloud manufacturing solution, which is software platform cooperated by ATR Soft Oy and SW Company China office. This study tries to understand the practical impacts and challenges that are derived from cloud manufacturing. The main conclusion of this study is that cloud manufacturing is an approach to achieve the transformation from traditional production-oriented manufacturing to next generation service-oriented manufacturing. Many manufacturing enterprises are already using a form of cloud computing in their existing network infrastructure to increase flexibility of its supply chain, reduce resources consumption, the study finds out the shift from cloud computing to cloud manufacturing is feasible. Meanwhile, the study points out the related theory, methodology and application of cloud manufacturing system are far from maturity, it is still an open field where many new technologies need to be studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research is the continuation and a joint work with a master thesis that has been done in this department recently by Hemamali Chathurangani Yashika Jayathunga. The mathematical system of the equations in the designed Heat Exchanger Network synthesis has been extended by adding a number of equipment; such as heat exchangers, mixers and dividers. The solutions of the system is obtained and the optimal setting of the valves (Each divider contains a valve) is calculated by introducing grid-based optimization. Finding the best position of the valves will lead to maximization of the transferred heat in the hot stream and minimization of the pressure drop in the cold stream. The aim of the following thesis will be achieved by practicing the cost optimization to model an optimized network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the effects of hot-air drying conditions on color, water holding capacity, and total phenolic content of dried apple were investigated using artificial neural network as an intelligent modeling system. After that, a genetic algorithm was used to optimize the drying conditions. Apples were dried at different temperatures (40, 60, and 80 °C) and at three air flow-rates (0.5, 1, and 1.5 m/s). Applying the leave-one-out cross validation methodology, simulated and experimental data were in good agreement presenting an error < 2.4 %. Quality index optimal values were found at 62.9 °C and 1.0 m/s using genetic algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a neuro-fuzzy estimator was developed for the estimation of biomass concentration of the microalgae Synechococcus nidulans from initial batch concentrations, aiming to predict daily productivity. Nine replica experiments were performed. The growth was monitored daily through the culture medium optic density and kept constant up to the end of the exponential phase. The network training followed a full 3³ factorial design, in which the factors were the number of days in the entry vector (3,5 and 7 days), number of clusters (10, 30 and 50 clusters) and internal weight softening parameter (Sigma) (0.30, 0.45 and 0.60). These factors were confronted with the sum of the quadratic error in the validations. The validations had 24 (A) and 18 (B) days of culture growth. The validations demonstrated that in long-term experiments (Validation A) the use of a few clusters and high Sigma is necessary. However, in short-term experiments (Validation B), Sigma did not influence the result. The optimum point occurred within 3 days in the entry vector, 10 clusters and 0.60 Sigma and the mean determination coefficient was 0.95. The neuro-fuzzy estimator proved a credible alternative to predict the microalgae growth.