989 resultados para Dynamical behaviour
Resumo:
A version of the Canadian Middle Atmosphere Model (CMAM) that is nudged toward reanalysis data up to 1 hPa is used to examine the impacts of parameterized orographic and non-orographic gravity wave drag (OGWD and NGWD) on the zonal-mean circulation of the mesosphere during the extended northern winters of 2006 and 2009 when there were two large stratospheric sudden warmings. The simulations are compared to Aura Microwave Limb Sounder (MLS) observations of mesospheric temperature, carbon monoxide (CO) and derived zonal winds. The control simulation, which uses both OGWD and NGWD, is shown to be in good agreement with MLS. The impacts of OGWD and NGWD are assessed using simulations in which those sources of wave drag are removed. In the absence of OGWD the mesospheric zonal winds in the months preceding the warmings are too strong, causing increased mesospheric NGWD, which drives excessive downwelling, resulting in overly large lower mesospheric values of CO prior to the warming. NGWD is found to be most important following the warmings when the underlying westerlies are too weak to allow much vertical propagation of the orographic gravity waves to the mesosphere. NGWD is primarily responsible for driving the circulation that results in the descent of CO from the thermosphere following the warmings. Zonal mean mesospheric winds and temperatures in all simulations are shown to be strongly constrained by (i.e. slaved to) the stratosphere. Finally, it is demonstrated that the responses to OGWD and NGWD are non-additive due to their dependence and influence on the background winds and temperatures.
Resumo:
We consider the problem of discrete time filtering (intermittent data assimilation) for differential equation models and discuss methods for its numerical approximation. The focus is on methods based on ensemble/particle techniques and on the ensemble Kalman filter technique in particular. We summarize as well as extend recent work on continuous ensemble Kalman filter formulations, which provide a concise dynamical systems formulation of the combined dynamics-assimilation problem. Possible extensions to fully nonlinear ensemble/particle based filters are also outlined using the framework of optimal transportation theory.
Resumo:
The flow patterns generated by a pulsating jet used to study hydrodynamic modulated voltammetry (HMV) are investigated. It is shown that the pronounced edge effect reported previously is the result of the generation of a vortex ring from the pulsating jet. This vortex behaviour of the pulsating jet system is imaged using a number of visualisation techniques. These include a dye system and an electrochemically generated bubble stream. In each case a toroidal vortex ring was observed. Image analysis revealed that the velocity of this motion was of the order of 250 mm s−1 with a corresponding Reynolds number of the order of 1200. This motion, in conjunction with the electrode structure, is used to explain the strong ‘ring and halo’ features detected by electrochemical mapping of the system reported previously.
Resumo:
Individuals with Williams syndrome (WS) exhibit striking social behaviour that may be indicative of abnormally low social anxiety. The present research aimed to determine whether social anxiety is unusually low in WS and to replicate previous findings of increased generalised anxiety in WS using both parent and self report. Fifteen individuals with WS aged 12-28 years completed the Spence Children’s Anxiety Scale (SCAS) and the Children’s Automatic Thoughts Scale (CATS). Their responses were compared to clinically anxious and community comparison groups matched on mental age. The findings suggest that WS is not associated with unusually low social anxiety but that generalised anxiety symptoms and physical threat thoughts are increased in WS, relative to typically developing children.
Resumo:
This chapter explores the politics around the role of agency in the UK climate change debate. Government interventions on the demand side of consumption have increasingly involved attempts to obtain greater traction with the values, attitudes and beliefs of citizens in relation to climate change and also in terms of influencing consumer behaviour at an individual level. With figures showing that approximately 40% of the UK’s carbon emissions are attributable to household and transport behaviour, policy initiatives have progressively focused on the facilitation of “sustainable behaviours”. Evidence suggests however, that mobilisation of pro-environmental attitudes in addressing the perceived “value-action gap” has so far had limited success. Research in this field suggests that there is a more significant and nuanced “gap” between context and behaviour; a relationship that perhaps provides a more adroit reflection of reasons why people do not necessarily react in the way that policy-makers anticipate. Tracing the development of the UK Government’s behaviour change agenda over the last decade, we posit that a core reason for the limitations of this programme relates to an excessively narrow focus on the individual. This has served to obscure some of the wider political and economic aspects of the debate in favour of a more simplified discussion. The second part of the chapter reports findings from a series of focus groups exploring some of the wider political views that people hold around household energy habits, purchase and use of domestic appliances, and transport behaviour-and discusses these insights in relation to the literature on the agenda’s apparent limitations. The chapter concludes by considering whether the aims of the Big Society approach (recently established by the UK’s Coalition Government) hold the potential to engage more directly with some of these issues or whether they merely constitute a “repackaging” of the individualism agenda.
Resumo:
We describe the main differences in simulations of stratospheric climate and variability by models within the fifth Coupled Model Intercomparison Project (CMIP5) that have a model top above the stratopause and relatively fine stratospheric vertical resolution (high-top), and those that have a model top below the stratopause (low-top). Although the simulation of mean stratospheric climate by the two model ensembles is similar, the low-top model ensemble has very weak stratospheric variability on daily and interannual time scales. The frequency of major sudden stratospheric warming events is strongly underestimated by the low-top models with less than half the frequency of events observed in the reanalysis data and high-top models. The lack of stratospheric variability in the low-top models affects their stratosphere-troposphere coupling, resulting in short-lived anomalies in the Northern Annular Mode, which do not produce long-lasting tropospheric impacts, as seen in observations. The lack of stratospheric variability, however, does not appear to have any impact on the ability of the low-top models to reproduce past stratospheric temperature trends. We find little improvement in the simulation of decadal variability for the high-top models compared to the low-top, which is likely related to the fact that neither ensemble produces a realistic dynamical response to volcanic eruptions.
Resumo:
Geomagnetic activity has long been known to exhibit approximately 27 day periodicity, resulting from solar wind structures repeating each solar rotation. Thus a very simple near-Earth solar wind forecast is 27 day persistence, wherein the near-Earth solar wind conditions today are assumed to be identical to those 27 days previously. Effective use of such a persistence model as a forecast tool, however, requires the performance and uncertainty to be fully characterized. The first half of this study determines which solar wind parameters can be reliably forecast by persistence and how the forecast skill varies with the solar cycle. The second half of the study shows how persistence can provide a useful benchmark for more sophisticated forecast schemes, namely physics-based numerical models. Point-by-point assessment methods, such as correlation and mean-square error, find persistence skill comparable to numerical models during solar minimum, despite the 27 day lead time of persistence forecasts, versus 2–5 days for numerical schemes. At solar maximum, however, the dynamic nature of the corona means 27 day persistence is no longer a good approximation and skill scores suggest persistence is out-performed by numerical models for almost all solar wind parameters. But point-by-point assessment techniques are not always a reliable indicator of usefulness as a forecast tool. An event-based assessment method, which focusses key solar wind structures, finds persistence to be the most valuable forecast throughout the solar cycle. This reiterates the fact that the means of assessing the “best” forecast model must be specifically tailored to its intended use.
Resumo:
Environmental change research often relies on simplistic, static models of human behaviour in social-ecological systems. This limits understanding of how social-ecological change occurs. Integrative, process-based behavioural models, which include feedbacks between action, and social and ecological system structures and dynamics, can inform dynamic policy assessment in which decision making is internalised in the model. These models focus on dynamics rather than states. They stimulate new questions and foster interdisciplinarity between and within the natural and social sciences.
Resumo:
The mixing of floes of different thickness caused by repeated deformation of the ice cover is modeled as diffusion, and the mass balance equation for sea ice accounting for mass diffusion is developed. The effect of deformational diffusion on the ice thickness balance is shown to reach 1% of the divergence effect, which describes ridging and lead formation. This means that with the same accuracy the mass balance equation can be written in terms of mean velocity rather than mean mass-weighted velocity, which one should correctly use for a multicomponent fluid such as sea ice with components identified by floe thickness. Mixing (diffusion) of sea ice also occurs because of turbulent variations in wind and ocean drags that are unresolved in models. Estimates of the importance of turbulent mass diffusion on the dynamic redistribution of ice thickness are determined using empirical data for the turbulent diffusivity. For long-time-scale prediction (≫5 days), where unresolved atmospheric motion may have a length scale on the order of the Arctic basin and the time scale is larger than the synoptic time scale of atmospheric events, turbulent mass diffusion can exceed 10% of the divergence effect. However, for short-time-scale prediction, for example, 5 days, the unresolved scales are on the order of 100 km, and turbulent diffusion is about 0.1% of the divergence effect. Because inertial effects are small in the dynamics of the sea ice pack, diffusive momentum transfer can be disregarded.
Resumo:
A process-based fire regime model (SPITFIRE) has been developed, coupled with ecosystem dynamics in the LPJ Dynamic Global Vegetation Model, and used to explore fire regimes and the current impact of fire on the terrestrial carbon cycle and associated emissions of trace atmospheric constituents. The model estimates an average release of 2.24 Pg C yr−1 as CO2 from biomass burning during the 1980s and 1990s. Comparison with observed active fire counts shows that the model reproduces where fire occurs and can mimic broad geographic patterns in the peak fire season, although the predicted peak is 1–2 months late in some regions. Modelled fire season length is generally overestimated by about one month, but shows a realistic pattern of differences among biomes. Comparisons with remotely sensed burnt-area products indicate that the model reproduces broad geographic patterns of annual fractional burnt area over most regions, including the boreal forest, although interannual variability in the boreal zone is underestimated.
Resumo:
Simulations of the climatic response to mid-Holocene (6 ka BP) orbital forcing with two coupled ocean–atmosphere models (FOAM and CSM) show enhancement of monsoonal precipitation in parts of the American Southwest, Central America and northernmost South America during Northern Hemisphere summer. The enhanced onshore flow that brings precipitation into Central America is caused by a northward displacement of the inter-tropical convergence zone, driven by cooling of the equatorial and warming of the northern subtropical and mid-latitude ocean. Ocean feedbacks also enhance precipitation over the American Southwest, although the increase in monsoon precipitation there is largely driven by increases in land-surface temperature. The northward shift in the equatorial precipitation band that causes enhanced precipitation in Central America and the American Southwest has a negative feedback effect on monsoonal precipitation in northern South America. The simulations demonstrate that mid-Holocene aridity in the mid-continent of North America is dynamically linked to the orbitally induced enhancement of the summer monsoon in the American Southwest, with a spatial structure (wet in the Southwest and dry in the mid-continent) similar to that found in strong monsoon years today. Changes in winter precipitation along the west coast of North America, in Central America and along the Gulf Coast, caused by southward-displacement of the westerly storm tracks, indicate that changes in the Northern Hemisphere winter monsoon also play a role in regional climate changes during the mid-Holocene. Although the simulations with FOAM and CSM differ in detail, the general mechanisms and patterns are common to both. The model results thus provide a coherent dynamical explanation for regional patterns of increased or decreased aridity shown by vegetation, lake status and aeolian data from the Americas
Resumo:
Tagging provides support for retrieval and categorization of online content depending on users' tag choice. A number of models of tagging behaviour have been proposed to identify factors that are considered to affect taggers, such as users' tagging history. In this paper, we use Semiotics Analysis and Activity theory, to study the effect the system designer has over tagging behaviour. The framework we use shows the components that comprise the tagging system and how they interact together to direct tagging behaviour. We analysed two collaborative tagging systems: CiteULike and Delicious by studying their components by applying our framework. Using datasets from both systems, we found that 35% of CiteULike users did not provide tags compared to only 0.1% of Delicious users. This was directly linked to the type of tools used by the system designer to support tagging.
Resumo:
The present study aims to contribute to an understanding of the complexity of lobbying activities within the accounting standard-setting process in the UK. The paper reports detailed content analysis of submission letters to four related exposure drafts. These preceded two accounting standards that set out the concept of control used to determine the scope of consolidation in the UK, except for reporting under international standards. Regulation on the concept of control provides rich patterns of lobbying behaviour due to its controversial nature and its significance to financial reporting. Our examination is conducted by dividing lobbyists into two categories, corporate and non-corporate, which are hypothesised (and demonstrated) to lobby differently. In order to test the significance of these differences we apply ANOVA techniques and univariate regression analysis. Corporate respondents are found to devote more attention to issues of specific applicability of the concept of control, whereas non-corporate respondents tend to devote more attention to issues of general applicability of this concept. A strong association between the issues raised by corporate respondents and their line of business is revealed. Both categories of lobbyists are found to advance conceptually-based arguments more often than economic consequences-based or combined arguments. However, when economic consequences-based arguments are used, they come exclusively from the corporate category of respondents.
Resumo:
This study of landscape evolution presents both new modern and palaeo process-landform data, and analyses the behaviour of the Antarctic Peninsula Ice Sheet through the Last Glacial Maximum (LGM), the Holocene and to the present day. Six sediment-landform assemblages are described and interpreted for Ulu Peninsula, James Ross Island, NE Antarctic Peninsula: (1) the Glacier Ice and Snow Assemblage; (2) the Glacigenic Assemblage, which relates to LGM sediments and comprises both erratic-poor and erratic-rich drift, deposited by cold-based and wet-based ice and ice streams respectively; (3) the Boulder Train Assemblage, deposited during a Mid-Holocene glacier readvance; (4) the Ice-cored Moraine Assemblage, found in front of small cirque glaciers; (5) the Paraglacial Assemblage including scree, pebble-boulder lags, and littoral and fluvial processes; and (6) the Periglacial Assemblage including rock glaciers, protalus ramparts, blockfields, solifluction lobes and extensive patterned ground. The interplay between glacial, paraglacial and periglacial processes in this semi-arid polar environment is important in understanding polygenetic landforms. Crucially, cold-based ice was capable of sediment and landform genesis and modification. This landsystem model can aid the interpretation of past environments, but also provides new data to aid the reconstruction of the last ice sheet to overrun James Ross Island.