912 resultados para Drop-In Clinics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blends of conventional fuels such as Jet-A1 (aviation kerosene) and diesel with bio-derived components, referred to as biofttels, are gradually replacing the conventional fuels in aircraft and automobile engines. There is a lack of understanding on the interaction of spray drops of such biofuels with solid surfaces. The present study is an experimental investigation on the impact of biofuel drops onto a smooth stainless steel surface. The biofuel is a mixture of 90% commercially available camelina-derived biofuel and 10% aromatics. Biofuel drops were generated using a syringe-hypodermic needle arrangement. On demand, the needle delivers an almost spherical drop with drop diameter in the range 2.05-2.15 mm. Static wetting experiments show that the biofuel drop completely wets the stainless steel surface and exhibits an equilibrium contact angle of 5.6. High speed video camera was used to capture the impact dynamics of biofuel drops with Weber number ranging from 20 to 570. The spreading dynamics and maximum spreading diameter of impacting biofuel drops on the target surface were analyzed. For the impact of high Weber number biofuel drops, the spreading law suggests beta similar to tau(0.5) where beta is the spread factor and tau, the nondimensionalized time. The experimentally observed trend of maximum spread factor, beta(max) of camelina biofuel drop on the target surface with We compares well with the theoretically predicted trend from Ukiwe-Kwok model. After reaching beta(max), the impacting biofuel drop undergoes a prolonged sluggish spreading due to the high wetting nature of the camelina biofuel-stainless steel system. As a result, the final spread factor is found to be a little more than beta(max). (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liquid drops impacted on textured surfaces undergo a transition from the Cassie state characterized by the presence of air pockets inside the roughness valleys below the drop to an impaled state with at least one of the roughness valleys filled with drop liquid. This occurs when the drop impact velocity exceeds a particular value referred to as the critical impact velocity. The present study investigates such a transition process during water drop impact on surfaces textured with unidirectional parallel grooves referred to as groove-textured surfaces. The process of liquid impalement into a groove in the vicinity of drop impact through de-pinning of the three-phase contact line (TPCL) beneath the drop as well as the critical impact velocity were identified experimentally from high speed video recordings of water drop impact on six different groove-textured surfaces made from intrinsically hydrophilic (stainless steel) as well as intrinsically hydrophobic (PDMS and rough aluminum) materials. The surface energy of various 2-D configurations of liquid-vapor interface beneath the drop near the drop impact point was theoretically investigated to identify the locally stable configurations and establish a pathway for the liquid impalement process. A force balance analysis performed on the liquid-vapor interface configuration just prior to TPCL de-pinning provided an expression for the critical drop impact velocity, U-o,U-cr, beyond which the drop state transitions from the Cassie to an impaled state. The theoretical model predicts that Uo, cr increases with the increase in pillar side angle, a, and intrinsic hydrophobicity whereas it decreases with the increase in groove top width, w, of the groove-textured surface. The quantitative predictions of the theoretical model were found to show good agreement with the experimental measurements of U-o,U-cr plotted against the surface texture geometry factor in our model, {tan(alpha/2)/w}(0.5).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop an approach that combines the power of nonlinear dynamics with the evolution equations for the mobile and immobile dislocation densities and force to explain force fluctuations in nanoindentation experiments. The model includes nucleation, multiplication, and propagation thresholds for mobile dislocations, and other well known dislocation transformation mechanisms. The model predicts all the generic features of nanoindentation such as the Hertzian elastic branch followed by several force drops of decreasing magnitudes, and residual plasticity after unloading. The stress corresponding to the elastic force maximum is close to the yield stress of an ideal solid. The predicted values for all the quantities are close to those reported by experiments. Our model allows us to address the indentation-size effect including the ambiguity in defining the hardness in the force drop dominated regime. At large indentation depths, the hardness remains nearly constant with a marginal decreasing trend.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Injection of liquid fuel in cross flowing air has been a strategy for future aircraft engines in order to control the emissions. In this context, breakup of a pressure swirl spray in gaseous cross-flow is investigated experimentally. The atomizer discharges a conical swirling sheet of liquid that interacts with cross-flowing air. This complex interaction and the resulting spray structures at various flow conditions are studied through flow visualization using still as well as high speed photography. Experiments are performed over a wide range of aerodynamic Weber number (2-300) and liquid-to-air momentum flux ratio (5-150). Various breakup regimes exhibiting different breakup processes are mapped on a parameter space based on flow conditions. This map shows significant variations from breakup regime map for a plain liquid jet in cross-flow. It is observed that the breakup of leeward side of the sheet is dominated by bag breakup and the windward side of the sheet undergoes breakup through surface waves. Similarities and differences between bag breakup present in plain liquid jet in cross-flow and swirl spray in cross-flow are explained. Multimodal drop size distribution from bag breakup, frequency of bag breakup, wavelength of surface waves and trajectory of spray in cross-flow are measured by analyzing the spray images and parametric study of their variations is also presented. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Irregular force fluctuations are seen in most nanotubulation experiments. The dynamics behind their presence has, however, been neither commented upon nor modeled. A simple estimate of the mean energy dissipated in force drops turns out to be several times the thermal energy. This coupled with the rate dependent nature of the deformation reported in several experiments point to a dynamical origin of the serrations. We simplify the whole process of tether formation through a three-stage model of successive deformations of sphere to ellipsoid, neck-formation, and tubule birth and extension. Based on this, we envisage a rate-softening frictional force at the neck that must be overcome before a nanotube can be pulled out. Our minimal model includes elastic and visco-elastic deformation of the vesicle, and has built-in dependence on pull velocity, vesicle radius, and other material parameters, enabling us to capture various kinds of serrated force-extension curves for different parameter choices. Serrations are predicted in the nanotubulation region. Other features of force-extension plots reported in the literature such as a plateauing serrated region beyond a force drop, serrated flow region with a small positive slope, an increase in the elastic threshold with pull velocity, force-extension curves for vesicles with larger radius lying lower than those for smaller radius, are all also predicted by the model. A toy model is introduced to demonstrate that the role of the friction law is limited to inducing stick-slip oscillations in the force, and all other qualitative and quantitative features emerging from the model can only be attributed to other physical mechanisms included in the deformation dynamics of the vesicle. (C) 2014 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present experimental work is concerned with the study of amplitude dependent acoustic response of an isothermal coaxial swirling jet. The excitation amplitude is increased in five distinct steps at the burner's Helmholtz resonator mode (i.e., 100 Hz). Two flow states are compared, namely, sub-critical and super-critical vortex breakdown (VB) that occur before and after the critical conical sheet breakdown, respectively. The geometric swirl number is varied in the range 2.14-4.03. Under the influence of external pulsing, global response characteristics are studied based on the topological changes observed in time-averaged 2D flow field. These are obtained from high resolution 2D PIV (particle image velocimetry) in the longitudinal-mid plane. PIV results also illustrate the changes in the normalized vortex core coordinates (r(vcc)/(r(vcc))(0) (Hz), y(vcc)/(y(vcc))(0) (Hz)) of internal recirculation zone (IRZ). A strong forced response is observed at 100 Hz (excitation frequency) in the convectively unstable region which get amplified based on the magnitude of external forcing. The radial extent of this forced response region at a given excitation amplitude is represented by the acoustic response region (b). The topological placement of the responsive convectively unstable region is a function of both the intensity of imparted swirl (characterized by swirl number) and forcing amplitude. It is observed that for sub-critical VB mode, an increase in the excitation amplitude till a critical value shifts the vortex core centre (particularly, the vortex core moves downstream and radially outwards) leading to drastic fanning-out/widening of the IRZ. This is accompanied by similar to 30% reduction in the recirculation velocity of the IRZ. It is also observed that b < R (R: radial distance from central axis to outer shear layer-OSL). At super-critical amplitudes, the sub-critical IRZ topology transits back (the vortex core retracts upstream and radially inwards) and finally undergoes a transverse shrinkage ((r(vcc))/(r(vcc))(0 Hz) decreases by similar to 20%) when b >= R. In contrast, the vortex core of super-critical breakdown mode consistently spreads radially outwards and is displaced further downstream. Finally, the IRZ fans-out at the threshold excitation amplitude. However, the acoustic response region b is still less than R. This is explained based on the characteristic geometric swirl number (S-G) of the flow regimes. The super-critical flow mode with higher S-G (hence, higher radial pressure drop due to rotational effect which scales as Delta P similar to rho u theta(2) and acts inwards towards the center line) compared to sub-critical state imposes a greater resistance to the radial outward spread of b. As a result, the acoustic energy supplied to the super-critical flow mode increases the degree of acoustic response at the pulsing frequency and energizes its harmonics (evident from power spectra). As a disturbance amplifier, the stronger convective instability mode within the flow structure of super-critical VB causes the topology to widen/fan-out severely at threshold excitation amplitude. (C) 2015 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present volume of fluid based numerical simulations of secondary breakup of a drop with high density ratio (approx. 1000) and also perform experiments by injecting monodisperse water droplets in a continuous jet of air and capture the breakup regimes, namely, bag formation, bag-stamen, multibag and shear breakup, observed in the moderate Weber number range (20-120). We observe an interesting transition regime between bag and shear breakup for We = 80, in both simulations as well as experiments, where the formation of multiple lobes, is observed, instead of a single bag, which are connected to each other via thicker rim-like threads that hold them. We show that the transition from bag to shear breakup occurs owing to the rim dynamics which shows retraction under capillary forces at We = 80, whereas the rim is sheared away with flow at We = 120 thus resulting in a backward facing bag. The drop characteristics and timescales obtained in simulations are in good agreement with experiments. The drop size distribution after the breakup shows bimodal nature for the single-bag breakup mode and a unimodal nature following lognormal distribution for higher Weber numbers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the correlation between the band propagation property and the nature and amplitude of serrations in the Portevin-Le Chatelier effect within the framework of the Ananthakrishna model. Several significant results emerge. First, we find that spatial and temporal correlations continuously increase with strain rate from type C to type A bands. Consequently, the nature of the bands also changes continuously from type C to A bands, and so do the changes in the associated serrations. Second, even the smallest extent of propagation induces small amplitude serrations. The spatial extent of band propagation is directly correlated with the duration of small amplitude serrations, a result that is consistent with recent experiments. This correspondence allows one to estimate the spatial extent of band propagation by just measuring the temporal stretch of small amplitude serrations. Therefore, this should be of practical value when only stress versus strain is recorded. Third, the average stress drop magnitude of the small amplitude serrations induced by the propagating bands remains small and nearly constant with strain rate. As a consequence, the fully propagating type A bands are in a state of criticality. We rationalize the increasing levels of spatial and temporal correlations found with increasing strain rates. Lastly, the model also predicts several band morphologies seen in experiments including the Luders-like propagating band. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study reports results of an experimental investigation of airblast spray of water and ethanol in crossflow. Laser shadowgraphy and Particle/Droplet Imaging Analysis (PDIA) are used to derive spray trajectory and drop size information while Particle Tracking Velocimetry (PTV) is used to measure droplet velocities. A new phenomenon of spray bifurcation is observed for low Gas to Liquid Ratio (GLR) cases. The reasons for the spatial bifurcation can be attributed to a combination of reasons. These are (a) presence of large ligaments and droplets in the near-nozzle region for low GLRs (b) secondary breakup experienced by ligaments/droplets leading to formation of a large number of small droplets, and (c) the crossflow causing differential dispersion of the small and large droplets. A novel correlation for spray trajectory is proposed incorporating the momentum ratio and liquid surface tension. This correlation is shown to be effective in predicting the non-linear spray trajectory over a large range of conditions for not only water but ethanol and Jet-A also. It is observed that the larger droplets penetrate further into the crossflow, in the direction of injection. Thus, with increase in height of the measurement location from the injection plane, the droplet Sauter Mean Diameter (SMD) is found to increase. Moreover, as the droplets travel downstream in the crossflow direction, the droplet SMD is observed to decrease. The effect of drag is assessed by comparing velocity of different sizes of droplets at various locations. Smaller droplets are entrained into the crossflow at much lower elevations, whereas larger droplets tend to penetrate further into the crossflow. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantitative evaluation of the mechanical behavior of molecular materials by a nanoindentation technique has gained prominence recently. However, all the reported data have been on room-temperature properties despite many interesting phenomena observed in them with variations in temperature. In this paper, we report the results of nanoindentation experiments conducted as a function of temperature, T, between 283 and 343 K, on the major faces of three organic crystals: saccharin, sulfathiazole (form 2), and L-alanine, which are distinct in terms of the number and strength of intermolecular interactions in them. Results show that elastic modulus, E, and hardness, H, decrease markedly with increasing T. While E decreases linearly with T, the variations in H with T are not so, and were observed to drop by similar to 50% over the range of T investigated. The slope of the linear fits to E vs T for the organic crystals was found to be around 1, which is considerably higher than the values of 0.3-0.5 reported in the literature for metallic, ionic, and covalently bonded crystalline materials. Possible implications of the observed remarkable changes in H for pharmaceutical manufacturing are highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new automatic algorithm for the assessment of mixed mode crack growth rate characteristics is presented based on the concept of an equivalent crack. The residual ligament size approach is introduced to implementation this algorithm for identifying the crack tip position on a curved path with respect to the drop potential signal. The automatic algorithm accounting for the curvilinear crack trajectory and employing an electrical potential difference was calibrated with respect to the optical measurements for the growing crack under cyclic mixed mode loading conditions. The effectiveness of the proposed algorithm is confirmed by fatigue tests performed on ST3 steel compact tension-shear specimens in the full range of mode mixities from pure mode Ito pure mode II. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly conserved residues in enzymes are often found to be clustered close to active sites, suggesting that functional constraints dictate the nature of amino acid residues accommodated at these sites. Using the Plasmodiumfalciparum triosephosphate isomerase (PfTIM) enzyme () as a template, we have examined the effects of mutations at positions 64 and 75, which are not directly involved in the proton transfer cycle. Thr (T) occurring at position 75 is completely conserved, whereas only Gln (Q) and Glu (E) are accommodated at position 64. Biophysical and kinetic data are reported for four T75 (T75S/V/C/N) and two Q64 (Q64N/E) mutants. The dimeric structure is weakened in the Q64E and Q64N mutants, whereas dimer integrity is unimpaired in all four T75 mutants. Measurement of the concentration dependence of enzyme activity permits an estimate of K-d values for dimer dissociation (Q64N=73.79.2nm and Q64E=44.6 +/- 8.4nm). The T75S/V/C mutants have activities comparable to the wild-type enzyme, whereas a fourfold drop is observed for T75N. All four T75 mutants show a dramatic fall in activity between 35 degrees C and 45 degrees C. Crystal structure determination of the T75S/V/N mutants provides insights into the variations in local interactions, with the T75N mutant showing the largest changes. Hydrogen-bond interactions determine dimer stability restricting the choice of residues at position 64 to Gln (Q) and Glu (E). At position 75, the overwhelming preference for Thr (T) may be dictated by the imperative of maintaining temperature stability of enzyme activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies on travel survey instrument design and administration in the context of Indian cities are limited despite the fact that these aspects of travel survey face unique challenges here when compared to the cities in the developed world. Here we report results of a pilot survey conducted for evaluating the performances, alternative diary formats and survey administration techniques in Bengaluru city, India. The study proposes two diary formats. `Diary-1' is in day-planner format and is a variant of the one reported earlier in the literature. `Diary-2' is derived as a combination of `Diary-1' and the trip-based diaries widely applied in Indian cities. `Face-to-face', and `drop-off and pick-up' methods of survey administration are considered for retrieving the activity-travel information of individuals. Evidence appears to be strong that diary-2 is preferable to diary-1 for collecting the travel details of individuals. The comparison of the retrieval methods suggests that the face-to-face method of instrument administration is superior to the drop-off and pick-up method in terms of higher response rates and minimum recording errors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drop tower is an important ground based facility for microgravity science experiment. The technical performances of the drop tower NMLC are advanced compared with similar facilities in the US, Germany and Japan. The main components such as drop capsule, deceleration devices, release mechanism present its advantages and creativities.