938 resultados para Drawing, Italian
Resumo:
Innovation has long been an area of interest to social scientists, and particularly to psychologists working in organisational settings. The team climate inventory (TCI) is a facet-specific measure of team climate for innovation that provides a picture of the level and quality of teamwork in a unit using a series of Likert scales. This paper describes its Italian validation in 585 working group members employed in health-related and other contexts. The data were evaluated by means of factorial analysis (including an analysis of the internal consistency of the scales) and Pearson’s product moment correlations. The results show the internal consistency of the scales and the satisfactory factorial structure of the inventory, despite some variations in the factorial structure mainly due to cultural differences and the specific nature of Italian organisational systems.
Resumo:
Several indices of plant capacity utilization based on the concept of best practice frontier have been proposed in the literature (Fare et al. 1992; De Borger and Kerstens, 1998). This paper suggests an alternative measure of capacity utilization change based on Generalized Malmquist index, proposed by Grifell-Tatje' and Lovell in 1998. The advantage of this specification is that it allows the measurement of productivity growth ignoring the nature of scale economies. Afterwards, this index is used to measure capacity change of a panel of Italian firms over the period 1989-94 using Data Envelopment Analysis and then its abilities of explaining the short-run movements of output are assessed.
Resumo:
Economic factors such as the rise in cost of raw materials, labour and power, are compelling manufacturers of cold-drawn polygonal sections, to seek new production routes which will enable the expansion in the varieties of metals used and the inclusion of difficult-to-draw materials. One such method generating considerable industrial interest is the drawing of polygonal sections from round at elevated temperature. The technique of drawing mild steel, medium carbon steel and boron steel wire into octagonal, hexagonal and square sections from round at up to 850 deg C and 50% reduction of area in one pass has been established. The main objective was to provide a basic understanding of the process, with particular emphasis being placed on modelling using both experimental and theoretical considerations. Elevated temperature stress-strain data was obtained using a modified torsion testing machine. Data were used in the upper bound solution derived and solved numerically to predict drawing stress strain, strain-rate, temperature and flow stress distribution in the deforming zone for a range of variables. The success of this warm working process will, of course, depend on the use of a satisfactory elevated temperature lubricant, an efficient cooling system, a suitable tool material having good wear and thermal shock resistance and an efficient die profile design which incorporates the principle of least work. The merits and demerits of die materials such as tungsten carbide, chromium carbide, Syalon and Stellite are discussed, principally from the standpoint of minimising drawing force and die wear. Generally, the experimental and theoretical results were in good agreement, the drawing stress could be predicted within close limits and the process proved to be technically feasible. Finite element analysis has been carried out on the various die geometries and die materials, to gain a greater understanding of the behaviour of these dies under the process of elevated temperature drawing, and to establish the temperature distribution and thermal distortion in the deforming zone, thus establishing the optimum die design and die material for the process. It is now possible to predict, for the materials already tested, (i) the optimum drawing temperature range, (ii) the maximum possible reduction of area per pass, (iii) the optimum drawing die profiles and die materials, (iv) the most efficient lubricant in terms of reducing the drawing force and die wear.