999 resultados para Double lip
Resumo:
The results of an experimental study and velocity analysis of the flow characteristics in the vicinityof a floodplain with two rows of permeable/impermeable groynes in compound channels with oneand two floodplains are presented. A 60% permeable groyne model with three different lengthsrelative to the floodplain width was used. The results showed that double groyne could beconsidered as one groyne (one block) for aspect ratio Sr < 2 (Sr = distance between twosuccessive groynes/groyne length). When Sr > 2, each groyne started to act independently.The velocity reduction was more than 45-52% of the floodplain’s approach velocity compared with30-35% in the case of a single groyne. The significant velocity reduction was located at a distance1.5-2 times the groyne length downstream of the single or the double groynes. Generally, themaximum velocities in the main channel ranged from 1.1 to 1.35 times the original approachingvelocity. The effective groyne relative length and aspect ratio should not to be more than 0.5 and 2,respectively.
Resumo:
Glazed Double Skin Facades (DSF) offer the potential to improve the performance of all-glass building skins, common to commercial office buildings in which full facade glazing has almost become the standard. Single skin glazing results in increased heating and cooling costs over opaque walls, due to lower thermal resistance of glass, and the increased impact of solar gain through it. However, the performance benefit of DSF technology continues to be questioned and its operation poorly understood, particularly the nature of airflow through the cavity. This paper deals specifically with the experimental analysis of the air flow characteristics in an automated double skin façade. The benefit of the DSF as a thermal buffer, and to limit overheating is evaluated through analysis of an extensive set of parameters including air and surface temperatures at each level in the DSF, airflow readings in the cavity and at the inlet and outlet, solar and wind data, and analytically derived pressure differentials. The temperature and air-flow are monitored in the cavity of a DSF using wireless sensors and hot wire anemometers respectively. Automated louvre operation and building set-points are monitored via the BMS. Thermal stratification and air flow variation during changing weather conditions are shown to effect the performance of the DSF considerably and hence the energy performance of the building. The relative pressure effects due to buoyancy and wind are analysed and quantified. This research aims to developed and validate models of DSFs in the maritime climate, using multi-season data from experimental monitoring. This extensive experimental study provides data for training and validation of models.
Resumo:
Paediatric cardiac catheterizations may result in the administration of substantial amounts of iodinated contrast media and ionizing radiation. The aim of this work was to investigate the effect of iodinated contrast media in combination with in vitro and in vivo X-ray radiation on lymphocyte DNA. Six concentrations of iodine (15, 17.5, 30, 35, 45, and 52.5 mg of iodine per mL blood) represented volumes of iodinated contrast media used in the clinical setting. Blood obtained from healthy volunteers was mixed with iodinated contrast media and exposed to radiation doses commonly used in paediatric cardiac catheterizations (0 mGy, 70 mGy, 140 mGy, 250 mGy and 450 mGy). Control samples contained no iodine. For in vivo experimentation, pre and post blood samples were collected from children undergoing cardiac catheterization, receiving iodine concentrations of up to 51 mg of iodine per mL blood and radiation doses of up to 400 mGy. Fluorescence microscopy was performed to assess γH2AX-foci induction, which corresponded to the number of DNA double-strand breaks. The presence of iodine in vitro resulted in significant increases of DNA double-strand breaks beyond that induced by radiation for ≥17.5 mg/mL iodine to blood. The in vivo effects of contrast media on children undergoing cardiac catheterization resulted in a 19% increase in DNA double-strand breaks in children receiving an average concentration of 19 mg/mL iodine to blood. A larger investigation is required to provide further information of the potential benefit of lowering the amount of iodinated contrast media received during X-ray radiation investigations.
Resumo:
We present optical and near-infrared observations of the type IIb supernova (SN) 2011fu from a few days to similar to 300 d after explosion. The SN presents a double-peaked light curve (LC) similar to that of SN 1993J, although more luminous and with a longer cooling phase after the primary peak. The spectral evolution is also similar to SN 1993J's, with hydrogen dominating the spectra to similar to 40 d, then helium gaining strength, and nebular emission lines appearing from similar to 60 d post-explosion. The velocities derived from the P-Cygni absorptions are overall similar to those of other type IIb SNe. We have found a strong similarity between the oxygen and magnesium line profiles at late times, which suggests that these lines are forming at the same location within the ejecta. The hydrodynamical modelling of the pseudo-bolometric LC and the observed photospheric velocities suggest that SN 2011fu was the explosion of an extended star (R similar to 450 R-circle dot), in which 1.3 x 10(51) erg of kinetic energy were released and 0.15 M-circle dot of Ni-56 were synthesized. In addition, a better reproduction of the observed early pseudo-bolometric LC is achieved if a more massive H-rich envelope than for other type IIb SNe is considered (0.3 M-circle dot). The hydrodynamical modelling of the LC and the comparison of our late-time spectra with nebular spectral models for type IIb SNe, point to a progenitor for SN 2011fu with a Zero Age Main Sequence (ZAMS) mass of 13-18 M-circle dot.
Resumo:
In this paper, a novel and effective lip-based biometric identification approach with the Discrete Hidden Markov Model Kernel (DHMMK) is developed. Lips are described by shape features (both geometrical and sequential) on two different grid layouts: rectangular and polar. These features are then specifically modeled by a DHMMK, and learnt by a support vector machine classifier. Our experiments are carried out in a ten-fold cross validation fashion on three different datasets, GPDS-ULPGC Face Dataset, PIE Face Dataset and RaFD Face Dataset. Results show that our approach has achieved an average classification accuracy of 99.8%, 97.13%, and 98.10%, using only two training images per class, on these three datasets, respectively. Our comparative studies further show that the DHMMK achieved a 53% improvement against the baseline HMM approach. The comparative ROC curves also confirm the efficacy of the proposed lip contour based biometrics learned by DHMMK. We also show that the performance of linear and RBF SVM is comparable under the frame work of DHMMK.
Resumo:
This paper investigated using lip movements as a behavioural biometric for person authentication. The system was trained, evaluated and tested using the XM2VTS dataset, following the Lausanne Protocol configuration II. Features were selected from the DCT coefficients of the greyscale lip image. This paper investigated the number of DCT coefficients selected, the selection process, and static and dynamic feature combinations. Using a Gaussian Mixture Model - Universal Background Model framework an Equal Error Rate of 2.20% was achieved during evaluation and on an unseen test set a False Acceptance Rate of 1.7% and False Rejection Rate of 3.0% was achieved. This compares favourably with face authentication results on the same dataset whilst not being susceptible to spoofing attacks.
Resumo:
A double-well loaded with bosonic atoms represents an ideal candidate to simulate some of the most interesting aspects in the phenomenology of thermalisation and equilibration. Here we report an exhaustive analysis of the dynamics and steady state properties of such a system locally in contact with different temperature reservoirs. We show that thermalisation only occurs 'accidentally'. We further examine the nonclassical features and energy fluxes implied by the dynamics of the double-well system, thus exploring its finite-time thermodynamics in relation to the settlement of nonclassical correlations between the wells.
Resumo:
The speed of manufacturing processes today depends on a trade-off between the physical processes of production, the wider system that allows these processes to operate and the co-ordination of a supply chain in the pursuit of meeting customer needs. Could the speed of this activity be doubled? This paper explores this hypothetical question, starting with examination of a diverse set of case studies spanning the activities of manufacturing. This reveals that the constraints on increasing manufacturing speed have some common themes, and several of these are examined in more detail, to identify absolute limits to performance. The physical processes of production are constrained by factors such as machine stiffness, actuator acceleration, heat transfer and the delivery of fluids, and for each of these, a simplified model is used to analyse the gap between current and limiting performance. The wider systems of production require the co-ordination of resources and push at the limits of human biophysical and cognitive limits. Evidence about these is explored and related to current practice. Out of this discussion, five promising innovations are explored to show examples of how manufacturing speed is increasing—with line arrays of point actuators, parallel tools, tailored application of precision, hybridisation and task taxonomies. The paper addresses a broad question which could be pursued by a wider community and in greater depth, but even this first examination suggests the possibility of unanticipated innovations in current manufacturing practices.
Resumo:
A new version of the time-dependent close-coupling method is used to calculate the single and double photoionization of the Be and Mg atoms. Total cross sections are calculated using an implicit time propagator with a core orthogonalization method on a variable radial mesh. The double to single photoionization cross section ratios are found to be in good agreement with experiment for both Be and Mg.