907 resultados para Distributed network protocol
Resumo:
We propose a wireless medium access control (MAC) protocol that provides static-priority scheduling of messages in a guaranteed collision-free manner. Our protocol supports multiple broadcast domains, resolves the wireless hidden terminal problem and allows for parallel transmissions across a mesh network. Arbitration of messages is achieved without the notion of a master coordinating node, global clock synchronization or out-of-band signaling. The protocol relies on bit-dominance similar to what is used in the CAN bus except that in order to operate on a wireless physical layer, nodes are not required to receive incoming bits while transmitting. The use of bit-dominance efficiently allows for a much larger number of priorities than would be possible using existing wireless solutions. A MAC protocol with these properties enables schedulability analysis of sporadic message streams in wireless multihop networks.
Resumo:
The advent of Wireless Sensor Network (WSN) technologies is paving the way for a panoply of new ubiquitous computing applications, some of them with critical requirements. In the ART-WiSe framework, we are designing a two-tiered communication architecture for supporting real-time and reliable communications in WSNs. Within this context, we have been developing a test-bed application, for testing, validating and demonstrating our theoretical findings - a search&rescue/pursuit-evasion application. Basically, a WSN deployment is used to detect, localize and track a target robot and a station controls a rescuer/pursuer robot until it gets close enough to the target robot. This paper describes how this application was engineered, particularly focusing on the implementation of the localization mechanism.
Resumo:
The recently standardized IEEE 802.15.4/Zigbee protocol stack offers great potentials for ubiquitous and pervasive computing, namely for Wireless Sensor Networks (WSNs). However, there are still some open and ambiguous issues that turn its practical use a challenging task. One of those issues is how to build a synchronized multi-hop cluster-tree network, which is quite suitable for QoS support in WSNs. In fact, the current IEEE 802.15.4/Zigbee specifications restrict the synchronization in the beacon-enabled mode (by the generation of periodic beacon frames) to star-based networks, while it supports multi-hop networking using the peer-to-peer mesh topology, but with no synchronization. Even though both specifications mention the possible use of cluster-tree topologies, which combine multi-hop and synchronization features, the description on how to effectively construct such a network topology is missing. This paper tackles this problem, unveils the ambiguities regarding the use of the cluster-tree topology and proposes two collision-free beacon frame scheduling schemes. We strongly believe that the results provided in this paper trigger a significant step towards the practical and efficient use of IEEE 802.15.4/Zigbee cluster-tree networks.
Resumo:
Consider a wireless network where links may be unidirectional, that is, a computer node A can broadcast a message and computer node B will receive this message but if B broadcasts then A will not receive it. Assume that messages have deadlines. We propose a medium access control (MAC) protocol which replicates a message in time with carefully selected pauses between replicas, and in this way it guarantees that for every message at least one replica of that message is transmitted without collision. The protocol ensures this with no knowledge of the network topology and it requires neither synchronized clocks nor carrier sensing capabilities. We believe this result is significant because it is the only MAC protocol that offers an upper bound on the message queuing delay for unidirectional links without relying on synchronized clocks.
Resumo:
Wireless Sensor Networks (WSNs) are highly distributed systems in which resource allocation (bandwidth, memory) must be performed efficiently to provide a minimum acceptable Quality of Service (QoS) to the regions where critical events occur. In fact, if resources are statically assigned independently from the location and instant of the events, these resources will definitely be misused. In other words, it is more efficient to dynamically grant more resources to sensor nodes affected by critical events, thus providing better network resource management and reducing endto- end delays of event notification and tracking. In this paper, we discuss the use of a WSN management architecture based on the active network management paradigm to provide the real-time tracking and reporting of dynamic events while ensuring efficient resource utilization. The active network management paradigm allows packets to transport not only data, but also program scripts that will be executed in the nodes to dynamically modify the operation of the network. This presumes the use of a runtime execution environment (middleware) in each node to interpret the script. We consider hierarchical (e.g. cluster-tree, two-tiered architecture) WSN topologies since they have been used to improve the timing performance of WSNs as they support deterministic medium access control protocols.
Resumo:
This paper proposes a new strategy to integrate shared resources and precedence constraints among real-time tasks, assuming no precise information on critical sections and computation times is available. The concept of bandwidth inheritance is combined with a capacity sharing and stealing mechanism to efficiently exchange bandwidth among tasks to minimise the degree of deviation from the ideal system’s behaviour caused by inter-application blocking. The proposed Capacity Exchange Protocol (CXP) is simpler than other proposed solutions for sharing resources in open real-time systems since it does not attempt to return the inherited capacity in the same exact amount to blocked servers. This loss of optimality is worth the reduced complexity as the protocol’s behaviour nevertheless tends to be fair and outperforms the previous solutions in highly dynamic scenarios as demonstrated by extensive simulations. A formal analysis of CXP is presented and the conditions under which it is possible to guarantee hard real-time tasks are discussed.
Resumo:
Due to the growing complexity and adaptability requirements of real-time embedded systems, which often exhibit unrestricted inter-dependencies among supported services and user-imposed quality constraints, it is increasingly difficult to optimise the level of service of a dynamic task set within an useful and bounded time. This is even more difficult when intending to benefit from the full potential of an open distributed cooperating environment, where service characteristics are not known beforehand. This paper proposes an iterative refinement approach for a service’s QoS configuration taking into account services’ inter-dependencies and quality constraints, and trading off the achieved solution’s quality for the cost of computation. Extensive simulations demonstrate that the proposed anytime algorithm is able to quickly find a good initial solution and effectively optimises the rate at which the quality of the current solution improves as the algorithm is given more time to run. The added benefits of the proposed approach clearly surpass its reducedoverhead.
Resumo:
This paper proposes a new strategy to integrate shared resources and precedence constraints among real-time tasks, assuming no precise information on critical sections and computation times is available. The concept of bandwidth inheritance is combined with a greedy capacity sharing and stealing policy to efficiently exchange bandwidth among tasks, minimising the degree of deviation from the ideal system's behaviour caused by inter-application blocking. The proposed capacity exchange protocol (CXP) focus on exchanging extra capacities as early, and not necessarily as fairly, as possible. This loss of optimality is worth the reduced complexity as the protocol's behaviour nevertheless tends to be fair in the long run and outperforms other solutions in highly dynamic scenarios, as demonstrated by extensive simulations.
Resumo:
We present a distributed algorithm for cyber-physical systems to obtain a snapshot of sensor data. The snapshot is an approximate representation of sensor data; it is an interpolation as a function of space coordinates. The new algorithm exploits a prioritized medium access control (MAC) protocol to efficiently transmit information of the sensor data. It scales to a very large number of sensors and it is able to operate in the presence of sensor faults.
Resumo:
Diaphragm is the principal inspiratory muscle. Different techniques have been used to assess diaphragm motion. Among them, M-mode ultrasound has gain particular interest since it is non-invasive and accessible. However it is operator-dependent and no objective acquisition protocol has been established. Purpose: to establish a reliable method for the assessment of the diaphragmatic motion via the M-mode ultrasound.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do Grau de Mestre em Engenharia Informática.
Resumo:
The growing heterogeneity of networks, devices and consumption conditions asks for flexible and adaptive video coding solutions. The compression power of the HEVC standard and the benefits of the distributed video coding paradigm allow designing novel scalable coding solutions with improved error robustness and low encoding complexity while still achieving competitive compression efficiency. In this context, this paper proposes a novel scalable video coding scheme using a HEVC Intra compliant base layer and a distributed coding approach in the enhancement layers (EL). This design inherits the HEVC compression efficiency while providing low encoding complexity at the enhancement layers. The temporal correlation is exploited at the decoder to create the EL side information (SI) residue, an estimation of the original residue. The EL encoder sends only the data that cannot be inferred at the decoder, thus exploiting the correlation between the original and SI residues; however, this correlation must be characterized with an accurate correlation model to obtain coding efficiency improvements. Therefore, this paper proposes a correlation modeling solution to be used at both encoder and decoder, without requiring a feedback channel. Experiments results confirm that the proposed scalable coding scheme has lower encoding complexity and provides BD-Rate savings up to 3.43% in comparison with the HEVC Intra scalable extension under development. © 2014 IEEE.
Resumo:
The ART-WiSe (Architecture for Real-Time communications in Wireless Sensor Networks) framework aims at the design of new communication architectures and mechanisms for time-sensitive Wireless Sensor Networks (WSNs). We adopted a two-tiered architecture where an overlay Wireless Local Area Network (Tier 2) serves as a backbone for a WSN (Tier 1), relying on existing standard communication protocols and commercial-off-the-shell (COTS) technologies – IEEE 802.15.4/ZigBee for Tier 1 and IEEE 802.11 for Tier 2. In this line, a test-bed application is being developed for assessing, validating and demonstrating the ART-WiSe architecture. A pursuit-evasion application was chosen since it fulfils a number of requirements, namely it is feasible and appealing and imposes some stress to the architecture in terms of timeliness. To develop the testbed based on the previously referred technologies, an implementation of the IEEE 8021.5.4/ZigBee protocols is being carried out, since there is no open source available to the community. This paper highlights some relevant aspects of the ART-WiSe architecture, provides some intuition on the protocol stack implementation and presents a general view over the envisaged test-bed application.
Resumo:
With the current complexity of communication protocols, implementing its layers totally in the kernel of the operating system is too cumbersome, and it does not allow use of the capabilities only available in user space processes. However, building protocols as user space processes must not impair the responsiveness of the communication. Therefore, in this paper we present a layer of a communication protocol, which, due to its complexity, was implemented in a user space process. Lower layers of the protocol are, for responsiveness issues, implemented in the kernel. This protocol was developed to support large-scale power-line communication (PLC) with timing requirements.
Resumo:
In this paper, we analyze the performance limits of the slotted CSMA/CA mechanism of IEEE 802.15.4 in the beacon-enabled mode for broadcast transmissions in WSNs. The motivation for evaluating the beacon-enabled mode is due to its flexibility for WSN applications as compared to the non-beacon enabled mode. Our analysis is based on an accurate simulation model of the slotted CSMA/CA mechanism on top of a realistic physical layer, with respect to the IEEE 802.15.4 standard specification. The performance of the slotted CSMA/CA is evaluated and analyzed for different network settings to understand the impact of the protocol attributes (superframe order, beacon order and backoff exponent) on the network performance, namely in terms of throughput (S), average delay (D) and probability of success (Ps). We introduce the concept of utility (U) as a combination of two or more metrics, to determine the best offered load range for an optimal behavior of the network. We show that the optimal network performance using slotted CSMA/CA occurs in the range of 35% to 60% with respect to an utility function proportional to the network throughput (S) divided by the average delay (D).