931 resultados para Dispersive liquid–liquid microextraction


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mixed metal oxides constitute an important class of catalytic materials widely investigated in different fields of applications. Studies of rare earth nickelates have been carried by several researchers in order to investigate the structural stability afforded by oxide formed and the existence of catalytic properties at room temperature. So, this study aims synthesize the nanosized catalyst of nickelate of lanthanum doped with strontium (La(1-x)SrxNiO4-d; x = 0,2 and 0,3), through the Pechini method and your characterization for subsequent application in the desulfurization of thiophene reaction. The precursor solutions were calcined at 300ºC/2h for pyrolysis of polyester and later calcinations occurred at temperatures of 500 - 1000°C. The resulting powders were characterized by thermogravimetric analysis (TG / DTG), surface area for adsorption of N2 by BET method, X-ray diffraction (XRD), scanning electron microscopy (HR_SEM) and spectrometry dispersive energy (EDS). The results of XRD had show that the perovskites obtained consist of two phases (LSN and NiO) and from 700ºC have crystalline structure. The results of SEM evidenced the obtainment of nanometric powders. The results of BET show that the powders have surface area within the range used in catalysis (5-50m2/g). The characterization of active sites was performed by reaction of desulfurization of thiophene at room temperature and 200ºC, the relation F/W equal to 0,7 mol h-1mcat -1. The products of the reaction were separated by gas chromatography and identified by the selective detection PFPD sulfur. All samples had presented conversion above 95%

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research studies the sintering of ferritic steel chips from the machining process. Were sintered metal powder obtained from machining process chips for face milling of a ferritic steel. The chip was produced by machining and characterized by SEM and EDS, and underwent a process of high energy mill powder characterized also by SEM and EDS. Were constructed three types of matrixes for uniaxial compression (relation l / d greater than 2.5). The differences in the design of the matrixes were essentially in the direction of load application, which for cylindrical case axial direction, while for the rectangular arrays, the longer side. Two samples were compressed with different geometries, a cylindrical and rectangular with the same compaction pressure of 700 MPa. The samples were sintered in a vacuum resistive furnace, heating rate 20 °C / min., isotherm 1300 °C for 60 minutes, and cooling rate of 25 °C / min to room temperature. The starting material of the rectangular sample was further annealed up to temperature of 800 ° C for 30 min. Sintered samples were characterized by scanning electron microscopy, optical microscopy and EDS. The sample compressed in the cylindrical matrix did not show a regular density reflecting in the sintered microstructure revealed by the irregular geometry of the pores, characterizing that the sintering was not complete, reaching only the second phase. As for the specimen compacted in the rectangular array, the analysis performed by scanning electron microscopy, optical microscopy and EDS indicate a good densification, and homogeneous microstructure in their full extent. Additionally, the EDS analyzes indicate no significant changes in chemical composition in the process steps. Therefore, it is concluded that recycling of chips, from the processed ferritic steel is feasible by the powder metallurgy. It makes possible rationalize raw material and energy by manufacture of known properties components from chips generated by the machining process, being benefits to the environment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study aimed at the treatment of attapulgite for the development and characterization of composite recycled low density polyethylene - PEBD_rec embedded with natural attapulgite - ATP_NAT, sifted - ATP_PN and attapulgite treated with sulfuric acid - ATP_TR in different compositions (1, 3 and 5%) and compared with the PEBD_rec. The atapulgitas, natural, screened and treated, were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), particle size analysis, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and determining the area specific surface (BET). The composites were characterized by thermogravimetry (TG), differential scanning calorimetry (DSC), Xray diffraction (XRD), torque rheometry, scanning electron microscopy (SEM) and traction. The composite PEBD_rec / ATP (natural, sieved and treated) were produced by mixing in the molten state in a single screw extruder matrix wire with subsequent reprocessing matrix tape. It was found that the screening of attapulgite not reduce the quantity of quartz and the acid treatment completely extracted dolomite aggregate impurities of the channels attapulgite, and increase their surface area. The addition of attapulgite in PEBD_rec acts as a catalyst, reducing the thermal stability of the polymer. The increased concentration of attapulgite, increases resistance and reduces the elongation at break and modulus of elasticity of the composite PEBD_rec / attapulgite

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, ceramic powders belonging to the system Nd2-xSrxNiO4 (x = 0, 0.4, 0.8, 1.2 and 1.6) were synthesized for their use as catalysts to syngas production partial. It was used a synthesis route, relatively new, which makes use of gelatin as organic precursor. The powders were analyzed at several temperatures in order to obtain the perovskite phase and characterized by several techniques such as thermal analysis, X-rays diffraction, Rietveld refinement method, specific surface area, scanning electron microscopy, energy dispersive spectroscopy of X-rays and temperature programmed reduction. The results obtained using these techniques confirmed the feasibility of the synthesis method employed to obtain nanosized particles. The powders were tested in differential catalytic conditions for dry reforming of methane (DRM) and partial oxidation of methane (POM), then, some systems were chosen for catalytic integrals test for (POM) indicating that the system Nd2-xSrxNiO4 for x = 0, 0.4 and 1.2 calcined at 900 °C exhibit catalytic activity on the investigated experimental conditions in this work without showing signs of deactivation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal substrates were coated by thermal spraying plasma torch, they were positioned at a distance of 4 and 5 cm from the nozzle exit of the plasma jet. The starting materials were used for deposition of tantalum oxide powder and aluminium. These two materials were mixed and ground into high-energy mill, then immersed in the torch for the production of alumina coating infused with particles of tantalum with nano and micrometric size. The spraying equipment used is a plasma torch arc not transferred, which operating in the range of 250 A and 80 V, was able to produce enough heat to ignite aluminothermic between Ta2O5 and aluminum. Upon reaching the plasma jet, the mixing powders react with the heat of the blaze, which provides sufficient energy for melting aluminum particles. This energy is transferred through mechanisms of self-propagating to the oxide, beginning a reduction reaction, which then hits on the surface of the substrate and forms a coating on which a composite is formed by a junction metal - ceramic (Ta +Al2O3). The phases and quantification of each were obtained respectively by X-ray diffraction and the Rietveld method. Morphology by scanning electron microscopy and chemical analysis by energy dispersive spectroscopy EDS. It was also performed measurements of the substrate roughness, Vickers microhardness measurements in sprays and determination of the electron temperature of the plasma jet by optical emission spectroscopy EEO. The results confirmed the expectation generated around the end product of spraying the mixture Ta2O5 + Al, both in the formation of nano-sized particles and in their final form. The electron excitation temperature was consistent with the purpose of work, in addition, the thermodynamic temperature was efficient for the reduction process of Ta2O5. The electron excitation temperature showed values of 3000, 4500 and 8000 K for flows10, 20 and 30 l / min respectively, these values were taken at the nozzle exit of the plasma jet. The thermodynamic temperature around 1200 ° C, was effective in the reduction process of Ta2O5

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The technique of plasma nitriding by the cathode cage mainly stands out for its ability to produce uniform layers, even on parts with complex geometries. In this study, it was investigated the efficiency of this technique for obtaining duplex surface, when used, simultaneously, to nitriding treatment and thin film deposition at temperatures below 500°C. For this, were used samples of AISI 41 0 Martensitic Stainless Steel and performed plasma treatment, combining nitriding and deposition of thin films of Ti and/or TiN in a plasma atmosphere containing N2-H2. It was used a cathodic cage of titanium pure grade II, cylindrical with 70 mm diameter and 34 mm height. Samples were treated at temperature 420ºC for 2 and 12 hours in different working pressures. Optical Microscopy (OM), Scanning Electron Microscopy (SEM) with micro-analysis by Energy Dispersive Spectroscopy (EDS), X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM) and analysis of Vickers Microhardness were used to investigate coating properties such as homogeneity and surface topography, chemical composition, layer thickness, crystalline phase, roughness and surface microhardness. The results showed there is a direct proportionality between the presence of H2 in plasma atmosphere and the quantity of titanium in surface chemical composition. It was also observed that the plasma treatment at lowpressure is more effective in formation of TiN thin film

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic ceramics have been widely investigated, especially with respect to intrinsic and extrinsic characteristics of these materials. Among the magnetic ceramic materials of technological interest, there are the ferrites. On the other hand, the thermal treatment of ceramic materials by microwave energy has offered various advantages such as: optimization of production processes, high heat control, low consumption of time and energy among others. In this work were synthesized powders of Ni-Zn ferrite with compositions Ni1- xZnxFe2O4 (0.25 ≤ x ≤ 0.75 mols) by the polymeric precursor route in two heat treatment conditions, conventional oven and microwave energy at 500, 650, 800 and 950°C and its structural, and morphological imaging. The materials were characterized by thermal analysis (TG/ DSC), X-ray diffraction (XRD), absorption spectroscopy in the infrared (FTIR), scanning electron microscopy (SEM), X-ray spectroscopy and energy dispersive (EDS) and vibrating sample magnetometry (VSM). The results of X-ray diffraction confirmed the formation of ferrite with spinel-type cubic structure. The extrinsic characteristics of the powders obtained by microwave calcination and influence significantly the magnetic behavior of ferrites, showing particles ferrimagnéticas characterized as soft magnetic materials (soft), is of great technological interest. The results obtained led the potential application of microwave energy for calcining powders of Ni-Zn ferrite

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the chemical method of synthesis of co-precipitation were produced ferrite powders manganese-cobalt equal stoichiometric formula Mn (1-x) Co (x) Fe2O4, for 0 < x < 1, first reagent element using as the hydroxide ammonium and second time using sodium hydroxide. The obtained powders were calcined at 400 ° C, 650 ° C, 900 ° C and 1150 ° C in a conventional oven type furnace with an air atmosphere for a period of 240 minutes. Other samples were calcined at a temperature of 900 ° C in a controlled atmosphere of argon, to evaluate the possible influence of the atmosphere on the final results the structure and morphology. The samples were also calcined in a microwave oven at 400 ° C and 650 ° C for a period of 45 minutes possible to evaluate the performance of this type of heat treatment furnace. It was successfully tested the ability of this group include isomorphic ferrite with the inclusion of nickel cations in order to evaluate the occurrence of disorder in the crystalline structures and their changes in magnetic characteristics.To identify the structural, morphological, chemical composition and proportions, as well as their magnetic characteristics were performed characterization tests of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDX), thermogravimetric (TG), vibrating sample magnetometry (MAV) and Mössbauer spectroscopy. These tests revealed the occurrence of distortion in the crystal lattice, changes in magnetic response, occurrence of nanosized particles and superparamagnetism

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The isolation of adjacent zones encountered during oilwell drilling is carried out by Portland-based cement slurries. The slurries are pumped into the annular positions between the well and the casing. Their rheological behavior is a very important component for the cementing process. Nowadays, several alternative materials are used in oilwell cementing, with goal the modification and the improvement of their properties, mainly the increase of the fluidity. And this can be reached by using plasticizers additives able to account for different oilwell conditions, yielding compatible cement slurries and allowing enough time for the complete cementing operation. If the rheological properties of the slurry are properly characterized, the load loss and flow regime can be correctly predicted. However, this experimental characterization is difficult. Rheological models capable of describing the cement slurry behavior must be capable of predicting the slurry cement deformation within reasonable accuracy. The aim of this study was to characterize rheologically the slurries prepared with a especial class of Portland cement, water and plasticizers based on lignosulfonate, melamine and polycarboxylate at temperatures varying from 27°C to 72°C. The tests were carried out according to the practical recommendations of the API RP 10B guidelines. The results revealed a great efficiency and the dispersive power of the polycarboxylate, for all temperatures tested. This additive promoted high fluidity of the slurries, with no sedimentation. High lignosulfonate and melamine concentrations did not reduce the rheological parameters (plastic viscosity and yield stress) of the slurries. It was verified that these additives were not compatible with the type of cement used. The evaluated rheological models were capable of describing the behavior of the slurries only within concentration and temperature ranges specific for each type of additive

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to assess the effectiveness and adverse effects on dental enamel caused by nightguard vital bleaching with 10% carbamide peroxide. This was accomplished through the interaction of researchers from different areas such as dentistry, materials engineering and physics. Fifty volunteers took part in the doubleblind randomized controlled clinical trial. They were allocated to an experimental group that used Opalescence PF 10% (OPA) and a control group that used a placebo gel (PLA). Fragments of human dental enamel from the vestibular surface of healthy premolars, extracted for orthodontic reasons, were fixed to the vestibular surface of the first upper molars of the volunteers for in situ observation. Bleaching was performed at night for 21 days. The observation periods included Baseline (BL), T0 (21 days), T30 (30 days after treatment) and T180 (180 days after treatment, only for the OPA group). Tooth color was assessed by comparing it with the Vita® scale and by the degree of satisfaction expressed by the volunteer. We also assessed adverse clinical effects, dental sensitivity and gingival bleeding. The study of adverse effects on enamel was conducted in vivo and in situ, using the DIAGNOdent® laser fluorescence device to detect mineral loss. Scanning electron microscopy (SEM) was used to check for superficial morphological alterations, energy dispersive spectrophotometry (EDS) to semiquantitatively assess chemical composition using the Ca/P ratio, and the x-ray diffraction (XRD) technique to observe alterations in enamel microstructure. The results showed that nightguard vital bleaching with 10% carbamide peroxide was effective in 96% of the cases, versus 8% for the PLA group. Dental sensitivity was present in 36% (9/25) of the cases. There was no significant association between gingival bleeding and the type of gel used (p = 1.00). In vivo laser fluorescence analysis showed no difference in values for the control group, whereas in the OPA group there was a statistically significant difference between baseline values in relation to the subsequent periods (p<0.01), with lower mean values for post-bleaching times. There was a significant difference between the groups for times T0 and T30. Micrographic analysis showed no enamel surface alterations related to the treatment performed. No significant alteration in Ca/P ratio was observed in the OPA group (p = 0.624) or in the PLA group (p = 0.462) for each of the observation periods, nor between the groups studied (p=0.102). The XRD pattern for both groups showed the presence of three-phase Hydroxyapatite according to JCPDS files (9-0432[Ca5(PO4)3(OH)], 18-0303[Ca3(PO4)2.xH2O] and 25-0166[Ca5(PO4)3(OH, Cl, F)]). No other peak associated to other phases was found, independent of the group analyzed, which reveals there was no disappearance, nucleation or phase transformation. Neither was there any alteration in peak pattern location. With the methodology and protocol used in this study, nightguard vital bleaching with 10% carbamide peroxide proved to be an effective and safe procedure for dental enamel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sulfated polysaccharides (SP) are widely distributed in animals and seaweeds tissues. These polymers have been studied in light of their important pharmacological activities, such as anticoagulant, antioxidant, antitumoral, anti-inflammatory, and antiviral properties. On other hand, SP potential to synthesize biomaterials like as nanoparticules has not yet been explored. In addition, to date, SP have only been found in six plants and all inhabit saline environments. However, the SP pharmacological plant activities have not been carrying out. Furthermore, there are no reports of SP in freshwater plants. Thus, do SP from marine plants show pharmacological activity? Do freshwater plants actually synthesize SP? Is it possible to synthesize nanoparticles using SP from seaweed? In order to understand this question, this Thesis was divided into tree chapters. In the first chapter a sulfated polysaccharide (SPSG) was successfully isolated from marine plant Halodule wrightii. The data presented here showed that the SPSG is a 11 kDa sulfated heterogalactan contains glucose and xylose. Several assays suggested that the SPSG possessed remarkable antioxidant properties in different in vitro assays and an outstanding anticoagulant activity 2.5-fold higher than that of heparin Clexane® in the aPTT test; in the next chapter using different tools such as chemical and histological analyses, energy-dispersive X-ray analysis (EDXA), gel electrophoresis and infra-red spectroscopy we confirm the presence of sulfated polysaccharides in freshwater plants for the first time. Moreover, we also demonstrate that SP extracted from E. crassipes root has potential as an anticoagulant compound; and in last chapter a fucan, a sulfated polysaccharide, extracted from the brown seaweed was chemically modified by grafting hexadecylamine to the polymer hydrophilic backbone. The resulting modified material (SNFuc) formed nanosized particles. The degree of substitution for hydrophobic chains of 1H NMR was approximately 93%. SNFfuc-TBa125 in aqueous media had a mean diameter of 123 nm and zeta potential of -38.3 ± 0.74 mV, measured bydynamic light scattering. Tumor-cell (HepG2, 786, H-S5) proliferation was inhibited by 2.0 43.7% at SNFuc concentrations of 0.05 0.5 mg/ mL and RAEC non-tumor cell line proliferation displayed inhibition of 8.0 22.0%. On the other hand, nanogel improved CHO and RAW non-tumor cell line proliferation in the same concentration range. Flow cytometric analysis revealed that this fucan nanogel inhibited 786 cell proliferation through caspase and caspaseindependent mechanisms. In addition, SNFuc blocks 786 cell passages in the S and G2-M phases of the cell cycle

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents a theoretical and numerical analysis using the transverse resonance technique (TRT) and a proposed MTRT applied in the analysis of the dispersive characteristics of microstrip lines built on truncated isotropic and anisotropic dielectric substrates. The TRT uses the transmission lines model in the transversal section of the structure, allowing to analyze its dispersive behavior. The difference between TRT and MTRT consists basically of the resonance direction. While in the TRT the resonance is calculated in the same direction of the metallic strip normal axis, the MTRT considers the resonance in the metallic strip parallel plane. Although the application of the MTRT results in a more complex equivalent circuit, its use allows some added characterization, like longitudinal section electric mode (LSE) and longitudinal section magnetic mode (LSM), microstrips with truncated substrate, or structures with different dielectric regions. A computer program using TRT and MTRT proposed in this work is implemented for the characterization of microstrips on truncated isotropic and anisotropic substrates. In this analysis, propagating and evanescent modes are considered. Thus, it is possible to characterize both the dominant and higher order modes of the structure. Numerical results are presented for the effective permittivity, characteristic impedance and relative phase velocity for microstrip lines with different parameters and dimensions of the dielectric substrate. Agreement with the results obtained in the literature are shown, as well as experimental results. In some cases, the convergence analysis is also performed by considering the limiting conditions, like particular cases of isotropic materials or structures with dielectric of infinite size found in the literature. The numerical convergence of the formulation is also analyzed. Finally, conclusions and suggestions for the continuity of this work are presented

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study were conducted experimental procedures for determination of variation of the expandability of rigid polyurethane foam (PUR) from a natural oil polyol (NOP), specifically the Castor oil plant, Ricinus communis, pure and additions of the vermiculite in phase dispersed in different percentage within a range from 0% to 20%, mass replacement. From the information acquired, were defined the parameters for production of bodies of test, plates obtained through controlled expansion, with the final volume fixed. Initially, the plates were subjected to thermal performance tests and evaluated the temperature profiles, to later be extracted samples duly prepared in accordance with the conditions required for each test. Was proceeded then the measurement of the coefficient of thermal conductivity, volumetric capacity heat and thermal diffusivity. The findings values were compared with the results obtained in the tests of thermal performance, contributing to validation of the same. Ultimately, it was investigated the influence that changes in physical-chemical structure of the material had exerted on the variation of thermophysical quantities through gas pycnometry, scanning electron microscopy (SEM) combined with energy dispersive X-ray fluorescence spectroscopy (EDXRF), infrared spectroscopy using Fourier transform (FTIR), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Based on the results obtained was possible to demonstrate that all load percentage analyzed promoted an increase in the potential expansion (PE) of the resin. In production of the plates, the composites with density near at the free expansion presented high contraction during the cure, being the of higher density adopted as definitive standard. In the thermal performance tests, the heating and cooling curves of the different composites had presented symmetry and values very close for lines of the temperature. The results obtained for the thermophysical properties of composites, showed little difference in respect of pure foam. The percentage of open pores and irregularities in the morphology of the composites were proportionate to the increment of vermiculite. In the interaction between the matrix and dispersed phase, there were no chemical transformations in the region of interface and new compounds were not generated. The composites of PUR-NOP and vermiculite presented thermal insulating properties near the foam pure and percentage significantly less plastic in its composition, to the formulation with 10% of load

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low cost seals are made of NBR, Nitrile Butadiene Rubber, a family of unsaturated copolymers that is higher resistant to oils the more content of nitrile have in its composition, although lower its flexibility. In Petroleum Engineering, NBR seal wear can cause fluid leakage and environmental damages, promoting an increasing demand for academic knowledge about polymeric materials candidate to seals submitted to sliding contacts to metal surfaces. This investigation aimed to evaluate tribological responses of a commercial NBR, hardness 73 ± 5 Sh A, polytetrafluoroethylene (PTFE), hardness 60 ± 4 HRE and PTFE with graphite, 68 ± 6 HRE. The testings were performed on a sliding tribometer conceived to explore the tribological performance of stationary polymer plane coupons submitted to rotational cylinder contact surface of steel AISI 52100, 20 ± 1 HRC Hardness, under dry and lubricated (oil SAE 15W40) conditions. After screening testings, the normal load, relative velocity and sliding distance were 3.15 N, 0.8 m/s and 3.2 km, respectively. The temperatures were collected over distances of 3.0±0.5 mm and 750±50 mm far from the contact to evaluate the heating in this referential zone due to contact sliding friction by two thermocouples K type. The polymers were characterized through Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The wear mechanisms of the polymer surfaces were analyzed by Scanning Electron Microscopy (SEM) and EDS (Energy-Dispersive X-ray Spectroscopy). NBR referred to the higher values of heating, suggesting higher sliding friction. PTFE and PTFE with graphite showed lower heating, attributed to the delamination mechanism

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composites based on PEEK + PTFE + CARBON FIBER + Graphite (G_CFRP) has increased application in the top industries, as Aerospace, Aeronautical, Petroleum, Biomedical, Mechanical and Electronics Engineering challenges. A commercially available G_CFRP was warmed up to three different levels of thermal energy to identify the main damage mechanisms and some evidences for their intrinsic transitions. An experimental test rig for systematize a heat flux was developed in this dissertation, based on the Joule Effect. It was built using an isothermal container, an internal heat source and a real-time measurement system for test a sample by time. A standard conical-cylindrical tip was inserted into a soldering iron, commercially available and identified by three different levels of nominal electrical power, 40W (manufacturer A), 40W (manufacturer B), 100W and 150W, selected after screening tests: these power levels for the heat source, after one hour of heating and one hour of cooling in situ, carried out three different zones of degradation in the composite surface. The bench was instrumented with twelve thermocouples, a wattmeter and a video camera. The twelve specimens tested suffered different degradation mechanisms, analyzed by DSC (Differential Scanning Calorimetry) and TG (Thermogravimetry) techniques, Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Rays (EDX) Analysis. Before and after each testing, it was measured the hardness of the sample by HRM (Hardness Rockwell M). Excellent correlations (R2=1) were obtained in the plots of the evaporated area after one hour of heating and one hour of cooling in situ versus (1) the respective power of heat source and (2) the central temperature of the sample. However, as resulting of the differential degradation of G_CFRP and their anisotropy, confirmed by their variable thermal properties, viscoelastic and plastic properties, there were both linear and non-linear behaviour between the temperature field and Rockwell M hardness measured in the radial and circumferential directions of the samples. Some morphological features of the damaged zones are presented and discussed, as, for example, the crazing and skeletonization mechanism of G_CFRP