947 resultados para Disease progression


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Memory deficits and executive dysfunction are highly prevalent among HIV-infected adults. These conditions can affect their quality of life, antiretroviral adherence, and HIV risk behaviors. Several factors have been suggested including the role of genetics in relation to HIV disease progression. This dissertation aimed to determine whether genetic differences in HIV-infected individuals were correlated with impaired memory, cognitive flexibility and executive function and whether cognitive decline moderated alcohol use and sexual transmission risk behaviors among HIV-infected alcohol abusers participating in an NIH-funded clinical trial comparing the efficacy of the adapted Holistic Health Recovery Program (HHRP-A) intervention to a Health Promotion Control (HPC) condition in reducing risk behaviors. A total of 267 individuals were genotyped for polymorphisms in the dopamine and serotonin gene systems. Results yielded significant associations for TPH2, GALM, DRD2 and DRD4 genetic variants with impaired executive function, cognitive flexibility and memory. SNPs TPH2 rs4570625 and DRD2 rs6277 showed a risk association with executive function (odds ratio = 2.5, p = .02; 3.6, p = .001). GALM rs6741892 was associated with impaired memory (odds ratio = 1.9, p = .006). At the six-month follow-up, HHRP-A participants were less likely to report trading sex for food, drugs and money (20.0%) and unprotected insertive or receptive oral (11.6%) or vaginal and/or anal sex (3.2%) than HPC participants (49.4%, p

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-grade serous ovarian cancer (HGSC) is the most prevalent epithelial ovarian cancer characterized by late detection, metastasis and resistance to chemotherapy. Previous studies on the tumour immune microenvironment in HGSC identified STAT1 and CXCL10 as the most differentially expressed genes between treatment naïve chemotherapy resistant and sensitive tumours. Interferon-induced STAT1 is a transcription factor, which induces many genes including tumour suppressor genes and those involved in recruitment of immune cells to the tumour immune microenvironment (TME), including CXCL10. CXCL10 is a chemokine that recruits tumour infiltrating lymphocytes (TILs) and exhibits angiostatic function. The current study was performed to determine the effects of differential STAT1 and CXCL10 expression on HGSC disease progression and TME. STAT1 expression and intratumoural CD8+ T cells were evaluated as prognostic and predictive biomarkers via immunohistochemistry on 734 HGSC tumours accrued from the Terry Fox Research Institute-Canadian Ovarian Experimental Unified Resource. The combined effect of STAT1 expression and CD8+ TIL density was confirmed as prognostic and predictive companion biomarkers in the second independent biomarker validation study. Significant positive correlation between STAT1 expression and intratumoral CD8+ TIL density was observed. The effects of enforced CXCL10 expression on HGSC tumour growth, vasculature and immune tumour microenvironment were studied in the ID8 mouse ovarian cancer cell engraftment in immunocompetent C57BL/6 mice. Significant decrease in tumour progression in mice injected with ID8 CXCL10 overexpressing cells compared to mice injected with ID8 vector control cells was observed. Multiplexed cytokine analysis of ascites showed differential expression of IL-6, VEGF and CXCL9 between the two groups. Endothelial cell marker staining showed differences in tumour vasculature between the two groups. Immune transcriptomic profiling identified distinct expression profiles in genes associated with cytokines, chemokines, interferons, T cell function and apoptosis between the two groups. These findings provide evidence that STAT1 is an independent biomarker and in combination with CD8+ TIL density could be applied as novel immune-based biomarkers in HGSC. These results provide the basis for future studies aimed at understanding mechanisms underlying differential tumour STAT1 and CXCL10 expression and its role in pre-existing tumour immunologic diversity, thus potentially contributing to biomarker guided immune modulatory therapies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose. Advanced cancer patients with disease progression develop cachexia. Nevertheless, cancer patients at nutritional risk have shown improved body weight and quality of life with oral nutritional supplements. Method. This was a randomized controlled trial in adult female cancer patients (n = 63) attending palliative clinics, with symptoms of cachexia. Eligible patients were randomly distributed into control (n = 33) and intervention (n = 30) groups. Both groups were provided with nutritional and physical activity counseling, but the intervention group received an additional 100 g of Improved Atta (IAtta) for 6 months daily consumption. This study was designed to assess the efficacy of IAtta (with counseling) in enhancing the health status of cachexic patients. Anthropometric measurements, dietary intake, physical activity level and quality of life parameters were assessed at baseline, after 3 months, and at the end of 6 months. Results. Patients in the control group (n = 15) had significantly decreased body weight (P = .003), mid–upper-arm circumference (P = .002), and body fat (P = .002) by the end of intervention. A trend of body weight gain in the intervention group (n = 17; P = .08) and significant increase of body fat (P = .002) was observed; moreover, patients reported a significant improvement in fatigue (P = .002) and appetite scores (P = .006) under quality-of-life domains at the end of intervention. Conclusions. Embedding a nutrition-sensitive intervention ( IAtta ) within Indian palliative care therapy may improve quality of life and stabilize body weight in cancer cachexia patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heart failure (HF) is an increasingly prevalent and costly multifactorial syndrome with high morbidity and mortality rates. The exact pathophysiological mechanisms leading to the development of HF are not completely understood. Several emerging paradigms implicate cardiometabolic risk factors, inflammation, endothelial dysfunction, myocardial fibrosis, and myocyte dysfunction as key factors in the gradual progression from a healthy state to HF. Inflammation is now a recognized factor in disease progression in HF and a therapeutic target. Furthermore, the monocyte-platelet interaction has been highlighted as an important pathophysiological link between inflammation, thrombosis, endothelial activation, and myocardial malfunction. The contribution of monocytes and platelets to acute cardiovascular injury and acute HF is well established. However, their role and interaction in the pathogenesis of chronic HF are not well understood. In particular, the cross talk between monocytes and platelets in the peripheral circulation and in the vicinity of the vascular wall in the form of monocyte-platelet complexes (MPCs) may be a crucial element, which influences the pathophysiology and progression of chronic heart disease and HF. In this review, we discuss the role of monocytes and platelets as key mediators of cardiovascular inflammation in HF, the mechanisms of cell activation, and the importance of monocyte-platelet interaction and complexes in HF pathogenesis. Finally, we summarize recent information on pharmacological inhibition of inflammation and studies of antithrombotic strategies in the setting of HF that can inform opportunities for future work. We discuss recent data on monocyte-platelet interactions and the potential benefits of therapy directed at MPCs, particularly in the setting of HF with preserved ejection fraction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: The development of heart failure is associated with changes in the size, shape, and structure of the heart that has a negative impact on cardiac function. These pathological changes involve excessive extracellular matrix deposition within the myocardial interstitium and myocyte hypertrophy. Alterations in fibroblast phenotype and myocyte activity are associated with reprogramming of gene transcriptional profiles that likely requires epigenetic alterations in chromatin structure. The aim of our work was to investigate the potential of a currently licensed anticancer epigenetic modifier as a treatment option for cardiac diseases associated with hypertension-induced cardiac hypertrophy and fibrosis.

METHODS AND RESULTS: The effects of DNA methylation inhibition with 5-azacytidine (5-aza) were examined in a human primary fibroblast cell line and in a spontaneously hypertensive rat (SHR) model. The results from this work allude to novel in vivo antifibrotic and antihypertrophic actions of 5-aza. Administration of the DNA methylation inhibitor significantly improved several echocardiographic parameters associated with hypertrophy and diastolic dysfunction. Myocardial collagen levels and myocyte size were reduced in 5-aza-treated SHRs. These findings are supported by beneficial in vitro effects in cardiac fibroblasts. Collagen I, collagen III, and α-smooth muscle actin were reduced in a human ventricular cardiac fibroblast cell line treated with 5-aza.

CONCLUSION: These findings suggest a role for epigenetic modifications in contributing to the profibrotic and hypertrophic changes evident during disease progression. Therapeutic intervention with 5-aza demonstrated favorable effects highlighting the potential use of this epigenetic modifier as a treatment option for cardiac pathologies associated with hypertrophy and fibrosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Pulmonary fibrosis is a debilitating and lethal disease with no effective treatment options. Understanding the pathological processes at play will direct the application of novel therapeutic avenues. Hypoxia has been implicated in the pathogenesis of pulmonary fibrosis yet the precise mechanism by which it contributes to disease progression remains to be fully elucidated. It has been shown that chronic hypoxia can alter DNA methylation patterns in tumour-derived cell lines. This epigenetic alteration can induce changes in cellular phenotype with promoter methylation being associated with gene silencing. Of particular relevance to idiopathic pulmonary fibrosis (IPF) is the observation that Thy-1 promoter methylation is associated with a myofibroblast phenotype where loss of Thy-1 occurs alongside increased alpha smooth muscle actin (α-SMA) expression. The initial aim of this study was to determine whether hypoxia regulates DNA methylation in normal human lung fibroblasts (CCD19Lu). As it has been reported that hypoxia suppresses Thy-1 expression during lung development we also studied the effect of hypoxia on Thy-1 promoter methylation and gene expression.

METHODS: CCD19Lu were grown for up to 8 days in hypoxia and assessed for global changes in DNA methylation using flow cytometry. Real-time PCR was used to quantify expression of Thy-1, α-SMA, collagen I and III. Genomic DNA was bisulphite treated and methylation specific PCR (MSPCR) was used to examine the methylation status of the Thy-1 promoter.

RESULTS: Significant global hypermethylation was detected in hypoxic fibroblasts relative to normoxic controls and was accompanied by increased expression of myofibroblast markers. Thy-1 mRNA expression was suppressed in hypoxic cells, which was restored with the demethylating agent 5-aza-2'-deoxycytidine. MSPCR revealed that Thy-1 became methylated following fibroblast exposure to 1% O2.

CONCLUSION: These data suggest that global and gene-specific changes in DNA methylation may play an important role in fibroblast function in hypoxia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In an attempt to reduce the heart failure epidemic,screening and prevention will become an increasing focus ofmanagement in the wider at-risk population. Refining riskprediction through the use of biomarkers in isolation or incombination is emerging as a critical step in this process.The utility of biomarkers to identify disease manifestationsbefore the onset of symptoms and detrimental myocardialdamage is proving to be valuable. In addition, biomarkers thatpredict the likelihood and rate of disease progression over timewill help streamline and focus clinical efforts and therapeuticstrategies. Importantly, several recent early intervention studiesusing biomarker strategies are promising and indicate thatnot only can new-onset heart failure be reduced but also thedevelopment of other cardiovascular conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanisms involved in the progression from monoclonal gammopathy of undetermined significance (MGUS) and smoldering myeloma (SMM) to malignant multiple myeloma (MM) and plasma cell leukemia (PCL) are poorly understood but believed to involve the sequential acquisition of genetic hits. We performed exome and whole-genome sequencing on a series of MGUS (n=4), high-risk (HR)SMM (n=4), MM (n=26) and PCL (n=2) samples, including four cases who transformed from HR-SMM to MM, to determine the genetic factors that drive progression of disease. The pattern and number of non-synonymous mutations show that the MGUS disease stage is less genetically complex than MM, and HR-SMM is similar to presenting MM. Intraclonal heterogeneity is present at all stages and using cases of HR-SMM, which transformed to MM, we show that intraclonal heterogeneity is a typical feature of the disease. At the HR-SMM stage of disease, the majority of the genetic changes necessary to give rise to MM are already present. These data suggest that clonal progression is the key feature of transformation of HR-SMM to MM and as such the invasive clinically predominant clone typical of MM is already present at the SMM stage and would be amenable to therapeutic intervention at that stage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: The prognostic significance of ATM mutations in chronic lymphocytic leukemia (CLL) is unclear. We assessed their impact in the context of a prospective randomized trial. PATIENTS AND METHODS: We analyzed the ATM gene in 224 patients treated on the Leukemia Research Fund Chronic Lymphocytic Leukemia 4 (LRF-CLL4) trial with chlorambucil or fludarabine with and without cyclophosphamide. ATM status was analyzed by denaturing high-performance liquid chromatography and was related to treatment response, survival, and the impact of TP53 alterations for the same patient cohort. RESULTS: We identified 36 ATM mutations in 33 tumors, 16 with and 17 without 11q deletion. Mutations were associated with advanced disease stage and involvement of multiple lymphoid sites. Patients with both ATM mutation and 11q deletion showed significantly reduced progression-free survival (median, 7.4 months) compared with those with ATM wild type (28.6 months), 11q deletion alone (17.1 months), or ATM mutation alone (30.8 months), but survival was similar to that in patients with monoallelic (6.7 months) or biallelic (3.4 months) TP53 alterations. This effect was independent of treatment, immunoglobulin heavy chain variable gene (IGHV) status, age, sex, or disease stage. Overall survival for patients with biallelic ATM alterations was also significantly reduced compared with those with ATM wild type or ATM mutation alone (median, 42.2 v 85.5 v 77.6 months, respectively). CONCLUSION: The combination of 11q deletion and ATM mutation in CLL is associated with significantly shorter progression-free and overall survival following first-line treatment with alkylating agents and purine analogs. Assessment of ATM mutation status in patients with 11q deletion may influence the choice of subsequent therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increases in free light chain (FLC) production are associated with disease progression in multiple myeloma (MM). Using a double immunofluorescence staining method to produce a differential count of plasma cells in bone marrow, single populations were demonstrated, containing intact monoclonal immunoglobulins (M-Igs) in 74% and FLCs only in 8% of cases. However, 18% contained a mixture of both cell populations. Progression from cells making intact M-Ig to cells restricted to FLC only production occurred in individual cases during the course of their disease. The presence of FLC only cells was associated with shortened survival.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To define specific pathways important in the multistep transformation process of normal plasma cells (PCs) to monoclonal gammopathy of uncertain significance (MGUS) and multiple myeloma (MM), we have applied microarray analysis to PCs from 5 healthy donors (N), 7 patients with MGUS, and 24 patients with newly diagnosed MM. Unsupervised hierarchical clustering using 125 genes with a large variation across all samples defined 2 groups: N and MGUS/MM. Supervised analysis identified 263 genes differentially expressed between N and MGUS and 380 genes differentially expressed between N and MM, 197 of which were also differentially regulated between N and MGUS. Only 74 genes were differentially expressed between MGUS and MM samples, indicating that the differences between MGUS and MM are smaller than those between N and MM or N and MGUS. Differentially expressed genes included oncogenes/tumor-suppressor genes (LAF4, RB1, and disabled homolog 2), cell-signaling genes (RAS family members, B-cell signaling and NF-kappaB genes), DNA-binding and transcription-factor genes (XBP1, zinc finger proteins, forkhead box, and ring finger proteins), and developmental genes (WNT and SHH pathways). Understanding the molecular pathogenesis of MM by gene expression profiling has demonstrated sequential genetic changes from N to malignant PCs and highlighted important pathways involved in the transformation of MGUS to MM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As doenças infeciosas distantes de serem um problema do passado têm aumentado drasticamente nestes últimos anos, causando epidemias emergentes, quer de origem bacteriana ou vírica ou de outros tipos de microrganismos. Esta dissertação tem como objetivo uma pesquisa atual bibliográfica sobre o estudo de algumas epidemias bacterianas emergentes do século XXI, como a Tuberculose, Cólera, Staphylococcus aureus resistente à meticilina (MRSA) e Meningite Meningocócica, bem como os seus dados epidemiológicos. A Tuberculose é uma das doenças mais antigas, que apresenta uma elevada taxa de mortalidade e com o passar do tempo tem vindo a aumentar a nível mundial. A TB é causada por uma bactéria denominada Mycobacterium tuberculosis que normalmente afeta os pulmões e outros órgãos. O tratamento, a prevenção e o diagnóstico precoce são pontos essenciais, para ter um bom desfecho para o doente. A Cólera tem-se propagado pelo mundo desde o século XX. Esta doença caracteriza-se por uma diarreia aguda grave que é causada pela bactéria Vibrio cholerae. O seu tratamento se for realizado precocemente é tratado facilmente, com apenas hidratação com sais orais. A prevenção é uma medida essencial para ter um bom prognóstico, e evitar surtos emergentes desta infeção. Devido à sua virulência, Staphylococcus aureus é responsável por infeções graves adquiridas em hospital e na comunidade. Na maioria das vezes esta infeção é assintomática, mas pode causar infeções graves até mesmo fatais. Devido às resistências aos antibióticos β-lactâmicos e de outros tipos de antibióticos, e também devido ao aumento do número crescente de quadros infeciosos de MRSA, houve necessidade de novos antibióticos como o linezolide, as cefasloporinas de 5ª geração no combate a estas infeções. As medidas de prevenção são essenciais, visto que se não forem realizadas pode haver progressão da doença. Além de um estudo científico constante dos mecanismos de resistências desta bactéria, ser essencial. A meningite bacteriana é um grave problema de Saúde Pública devido à alta incidência em crianças. A meningite meningocócica é causada pela bactéria Neisseria meningitidis que origina um processo inflamatório das meninges. Há algum tempo atrás a mortalidade era elevada, mas com o advento da antibioterapia reduziu significativamente. As vacinas fizeram com que ocorresse uma mudança bastante significativa na epidemiologia desta patologia, e mais uma vez a prevenção é essencial.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiple endocrine neoplasia syndromes have since been classified as types 1 and 2, each with specific phenotypic patterns. MEN1 is usually associated with pituitary, parathyroid and paraneoplastic neuroendocrine tumours. The hallmark of MEN2 is a very high lifetime risk of developing medullary thyroid carcinoma (MTC) more than 95% in untreated patients. Three clinical subtypesdMEN2A, MEN2B, and familial MTC (FMTC) have been defined based on the risk of pheochromocytoma, hyperparathyroidism, and the presence or absence of characteristic physical features). MEN2 occurs as a result of germline activating missense mutations of the RET (REarranged during Transfection) proto-oncogene. MEN2-associated mutations are almost always located in exons 10, 11, or 13 through 16. Strong genotype-phenotype correlations exist with respect to clinical subtype, age at onset, and aggressiveness of MTC in MEN2. These are used to determine the age at which prophylactic thyroidectomy should occur and whether screening for pheochromocytoma or hyperparathyroidism is necessary. Specific RET mutations can also impact management in patients presenting with apparently sporadic MTC. Therefore, genetic testing should be performed before surgical intervention in all patients diagnosed with MTC. Recently, Pellegata et al. have reported that germline mutations in CDKN1B can predispose to the development of multiple endocrine tumours in both rats and humans and this new MEN syndrome is named MENX and MEN4, respectively. CDKN1B. A recent report showed that in sporadic MTC, CDKN1B V109G polymorphism correlates with a more favorable disease progression than the wild-type allele and might be considered a new promising prognostic marker. New insights on MEN syndrome pathogenesis and related inherited endocrine disorders are of particular interest for an adequate surgical and therapeutic approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD) is a neuromuscular disease caused by mutations in the dystrophin gene. DMD is clinically characterized by severe, progressive and irreversible loss of muscle function, in which most patients lose the ability to walk by their early teens and die by their early 20’s. Impaired intracellular calcium (Ca2+) regulation and activation of cell degradation pathways have been proposed as key contributors to DMD disease progression. This dissertation research consists of three studies investigating the role of intracellular Ca2+ in skeletal muscle dysfunction in different mouse models of DMD. Study one evaluated the role of Ca2+-activated enzymes (proteases) that activate protein degradation in excitation-contraction (E-C) coupling failure following repeated contractions in mdx and dystrophin-utrophin null (mdx/utr-/-) mice. Single muscle fibers from mdx/utr-/- mice had greater E-C coupling failure following repeated contractions compared to fibers from mdx mice. Moreover, protease inhibition during these contractions was sufficient to attenuate E-C coupling failure in muscle fibers from both mdx and mdx/utr-/- mice. Study two evaluated the effects of overexpressing the Ca2+ buffering protein sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1 (SERCA1) in skeletal muscles from mdx and mdx/utr-/- mice. Overall, SERCA1 overexpression decreased muscle damage and protected the muscle from contraction-induced injury in mdx and mdx/utr-/- mice. In study three, the cellular mechanisms underlying the beneficial effects of SERCA1 overexpression in mdx and mdx/utr-/- mice were investigated. SERCA1 overexpression attenuated calpain activation in mdx muscle only, while partially attenuating the degradation of the calpain target desmin in mdx/utr-/- mice. Additionally, SERCA1 overexpression decreased the SERCA-inhibitory protein sarcolipin in mdx muscle but did not alter levels of Ca2+ regulatory proteins (parvalbumin and calsequestrin) in either dystrophic model. Lastly, SERCA1 overexpression blunted the increase in endoplasmic reticulum stress markers Grp78/BiP in mdx mice and C/EBP homologous protein (CHOP) in mdx and mdx/utr-/- mice. Overall, findings from the studies presented in this dissertation provide new insight into the role of Ca2+ in muscle dysfunction and damage in different dystrophic mouse models. Further, these findings support the overall strategy for improving intracellular Ca2+ control for the development of novel therapies for DMD.