928 resultados para Discriminating limits
Resumo:
A new method has been established to define the limits on a spontaneous mutation rate for a gene in Plasmodium falciparum. The method combines mathematical modelling and large-scale in vitro culturing and calculates the difference in mutant frequencies at 2 separate time-points. We measured the mutation rate at 2 positions in the dihydrofolate reductase (DHFR) gene of 3D7, a pyrimethamine-sensitive line of P. fulciparum. This line was re-cloned and an effectively large population was treated with a selective pyrimethamine concentration of 40 nM. We detected point mutations at codon-46 (TTA to TCA) and codon-108 (ACC to AAC), resulting in serine replacing leucine and asparagine replacing serine respectively in the corresponding gene product. The substitutions caused a decrease in pyrimethamine sensitivity. By mathematical modelling we determined that the mutation rate at a given position in DHFR was low and occurred at less than 2(.)5 x 10(-9) mutations/DHFR gene/replication. This result has important implications for Plasmodium genetic diversity and antimalarial drug therapy by demonstrating that even with lon mutation rates anti-malarial resistance will inevitably arise when mutant alleles are selected under drug pressure.
Resumo:
We studied the internal transcribed spacer 2 (ITS2) in twenty-two spp. of ticks from the subfamily Rhipicephalinae. A 104-109 base pair (bp) region was Imperfectly repeated In most ticks studied. Mapping the number of repeat copies on to a phylogeny from the ITS2 showed that there have been many Independent gains and losses of repeats. Comparison of the sequences of the repeat copies Indicated that in most taxa concerted evolution had played little if any role in the evolution of these regions, as the copies clustered by sequence position rather than species, In our putative secondary structure, each repeat copy can fold into a distinct and almost identical stem-loop complex; a gain or loss of a repeat copy apparently does not impair the function of the ITS2 in these ticks.
Resumo:
The Alcohol Use Disorders Identification Test (AUDIT) has been used widely and is reported to be superior to conventional questionnaires in detection of current hazardous and harmful alcohol use. We assessed the validity of an Australian modification of the AUDIT (the AusAUDIT), which has been employed widely in Australian and New Zealand early intervention programmes. We used a cross-sectional study of 370 subjects from the follow-up phase of a randomized controlled trial of early intervention to reduce hazardous alcohol consumption. Scores on the AusAUDIT were compared against 12-month ICD-10 diagnoses of harmful alcohol use and dependence, as determined by the Composite International Diagnostic Interview, and against self-report of alcohol consumption exceeding Australian National Health and Medical Research Council (NH&MRC) recommended limits. AusAUDIT had good internal consistency and discriminated significantly between persons meeting criteria for ICD-10 alcohol use disorders, and drinkers who did not. At currently recommended cut-off scores, AusAUDIT detected more than 85% of people meeting criteria for ICD-10 alcohol use disorders, or drinking over NH&MRC recommended limits, but its specificity was limited (29% in men, and 58% in women for drinking over NH&MRC limits). No subset of questions performed as well as the full AusAUDIT in detection of drinking problems, but the alcohol consumption items provided a reasonable screen for drinking over NH&MRC limits. We conclude that AusAUDIT is effective in detecting problematic drinking, but positive cases should be confirmed by clinical assessment. The findings illustrate the need for validation of questionnaire modifications, and the difficulty in increasing test sensitivity without reducing specificity.
Resumo:
The blending of coals has become popular to improve the performance of coals, to meet specifications of power plants and, to reduce the cost of coals, This article reviews the results and provides new information on ignition, flame stability, and carbon burnout studies of blended coals. The reviewed studies were conducted in laboratory-, pilot-, and full-scale facilities. The new information was taken in pilot-scale studies. The results generally show that blending a high-volatile coal with a low-volatile coal or anthracite can improve the ignition, flame stability and burnout of the blends. This paper discusses two general methods to predict the performance of blended coals: (1) experiment; and (2) indices. Laboratory- and pilot-scale tests, at least, provide a relative ranking of the combustion performance of coal/blends in power station boilers. Several indices, volatile matter content, heating value and a maceral index, can be used to predict the relative ranking of ignitability and flame stability of coals and blends. The maceral index, fuel ratio, and vitrinite reflectance can also be used to predict the absolute carbon burnout of coal and blends within limits. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The drosophilid fauna in Australia offers an important study system for evolutionary studies. Larval hosts are unknown for most species, however, and this imposes serious limits to understanding their ecological context. The present paper reports the first systematic, large-scale field survey of potential larval hosts to be conducted, in order to obtain an overview of the host utilisation patterns of Australian drosophilids. Potential hosts (mostly fruit and fungi) were collected from different vegetation types in northern and eastern Australia. Host data were obtained for 81 drosophilid species from 17 genera (or 28% of the known Fauna). Most genera were restricted to either fruit or fungi, although Scaptodrosophila spp. and Drosophila spp. were recorded from fruit, fungi, flowers and compost, and Drosophila spp. also emerged from the parasitic plant Balanophora fungosa. There was no evidence that use of either fruit or fungi was correlated to host phylogeny. Drosophilids emerged from hosts collected from all sampled vegetation types (rainforest, open forest, heath and domestic environments). Vegetation type influenced drosophilid diversity, both by affecting host availability and because some drosophilid species apparently restricted their search for hosts to particular vegetation types.
Resumo:
We examined the genetic diversity of symbiotic dinoflagellates (Symbiodinium sp.) in the widespread hermatypic coral Plesiastrea versipora from tropical/subtropical (north-eastern Australia) and temperate waters (south-eastern Australia) using restriction fragment length polymorphisms of partial 18S ribosomal DNA (rDNA), together with sequence analysis of partial 28S rDNA. This study revealed that P. versipora associates with at least two distinct genotypes of symbiotic dinoflagellates and that the presence of these genotypes varies with latitude. P. versipora colonies from subtropical and tropical waters contained symbionts belonging to Symbiodinium clade C, while P. versipora colonies at high-latitude sites contained clade B. Variability within the two groups of symbionts (clades H and C) was minimal, suggesting possible host fidelity. The geographically distinct varieties of symbionts within the tissue of this hermatypic coral are likely to be associated with algal physiological differences, which in turn may relate to changing selective pressures as a function of latitude along the eastern Australian seaboard.
Resumo:
Agapophytinae subf.n. is a highly diverse lineage of Australasian Therevidae, comprising eight described and two new genera: Agapophytus Guerin-Meneville, Acupalpa Krober, Acraspisa Krober, Belonalys Krober, Bonjeania Irwin & Lyneborg, Parapsilocephala Krober, Acatopygia Krober, Laxotela Winterton & Irwin, Pipinnipons gen.n. and Patanothrix gen.n. A genus-level cladistic analysis of the subfamily was undertaken using sixty-eight adult morphological characters and c. 1000 base pairs of the elongation factor-1 alpha (EF-1 alpha) protein coding gene. The morphological data partition produced three most parsimonious cladograms, whereas the molecular data partition gave a single most parsimonious cladogram, which did not match any of the cladograms found in the morphological analysis. The level of congruence between the data partitions was determined using the partition homogeneity test (HTF) and Wilcoxon signed ranks rest. Despite being significantly incongruent in at least one of the incongruence tests, the partitions were combined in a simultaneous analysis. The combined data yielded a single cladogram that was better supported than that of the individual partitions analysed separately. The relative contributions of the data partitions to support for individual nodes on the combined cladogram were investigated using Partitioned Bremer Support. The level of support for many nodes on the combined cladogram was non-additive and often greater than the sum of support for the respective nodes on individual partitions. This synergistic interaction between incongruent data partitions indicates a common phylogenetic signal in both partitions. It also suggests that criteria for partition combination based solely on incongruence may be misleading. The phylogenetic relationships of the genera are discussed using the combined data. A key to genera of Agapophytinae is presented, with genera diagnosed and figured. Two new genera are described: Patanothrix with a new species (Pat. skevingtoni) and Pat. wilsoni (Mann) transferred from Parapsilocephala, and Pipinnipons with a new species (Pip. kroeberi). Pipinnipons fascipennis (Krober) is transferred from Squamopygin Krober and Pip. imitans (Mann) is transferred from Agapophytus. Agapophytus bicolor (Krober) is transferred from Parapsilocephala. Agapophytus varipennis Mann is synonymised with Aga, queenslandi Krober and Aga. flavicornis Mann is synonymised with Aga. pallidicornis (Krober).
Resumo:
Much progress has been made on inferring population history from molecular data. However, complex demographic scenarios have been considered rarely or have proved intractable. The serial introduction of the South-Central American cane Load Bufo marinas in various Caribbean and Pacific islands involves four major phases: a possible genetic admixture during the first introduction, a bottleneck associated with founding, a transitory, population boom, and finally, a demographic stabilization. A large amount of historical and demographic information is available for those introductions and can be combined profitably with molecular data. We used a Bayesian approach to combine this information With microsatellite (10 loci) and enzyme (22 loci) data and used a rejection algorithm to simultaneously estimate the demographic parameters describing the four major phases of the introduction history,. The general historical trends supported by microsatellites and enzymes were similar. However, there was a stronger support for a larger bottleneck at introductions for microsatellites than enzymes and for a more balanced genetic admixture for enzymes than for microsatellites. Verb, little information was obtained from either marker about the transitory population boom observed after each introduction. Possible explanations for differences in resolution of demographic events and discrepancies between results obtained with microsatellites and enzymes were explored. Limits Of Our model and method for the analysis of nonequilibrium populations were discussed.
Resumo:
Objective: To compare measurements of sleeping metabolic rate (SMR) in infancy with predicted basal metabolic rate (BMR) estimated by the equations of Schofield. Methods: Some 104 serial measurements of SMR by indirect calorimetry were performed in 43 healthy infants at 1.5, 3, 6, 9 and 12 months of age. Predicted BMR was calculated using the weight only (BMR-wo) and weight and height (BMR-wh) equations of Schofield for 0-3-y-olds. Measured SMR values were compared with both predictive values by means of the Bland-Altman statistical test. Results: The mean measured SMR was 1.48 MJ/day. The mean predicted BMR values were 1.66 and 1.47 MJ/day for the weight only and weight and height equations, respectively. The Bland-Altman analysis showed that BMR-wo equation on average overestimated SMR by 0.18 MJ/day (11%) and the BMR-wh equation underestimated SMR by 0.01 MJ/day (1%). However the 95% limits of agreement were wide: - 0.64 to - 0.28MJ/day (28%) for the former equation and - 0.39 to +0.41 MJ/day (27%) for the latter equation. Moreover there was a significant correlation between the mean of the measured and predicted metabolic rate and the difference between them. Conclusions: The wide variation seen in the difference between measured and predicted metabolic rate and the bias probably with age indicates there is a need to measure actual metabolic rate for individual clinical care in this age group.
Resumo:
The vascular and bryophyte floras of subantarctic Heard Island were classified using cluster analysis into six vegetation communities: Open Cushion Carpet, Mossy Feldmark, Wet Mixed Herbfield, Coastal Biotic Vegetation, Saltspray Vegetation, and Closed Cushion Carpet. Multidimensional scaling indicated that the vegetation communities were not well delineated but were continua. Discriminant analysis and a classification tree identified altitude, wind, peat depth, bryophyte cover and extent of bare ground, and particle size as discriminating variables. The combination of small area, glaciation, and harsh climate has resulted in reduced vegetation variety in comparison to those subantarctic islands north of the Antarctic Polar Front Zone. Some of the functional groups and vegetation communities found on warmer subantarctic islands are not present on Heard Island, notably ferns and sedges and fernbrakes and extensive mires, respectively.
Resumo:
The recent discovery of isotrichid-like ciliates occurring as endosymbionts in macropodid marsupials posed interesting questions in regard to both their phyletic origin (all previous records confined to eutherian mammals) and their morphological evolution (Australian forms possibly representing missing links between previously described genera). The SSU rRNA gene was sequenced for three species (Dasytricha dehorityi, D. dogieli, and Batricha tasmaniensis) and aligned against representatives of all major ciliate classes. The Australian species did not group with the other isotrichid species but instead formed an independent radiation. Discrepancies between recent global phylogenies of the phylum Ciliophora were examined by manipulation of the aligned sequence data set. Sources of conflict between these studies did not stem from differences in outgroup choice or phylogenetic reconstruction methods. Differences in the application of confidence limits and primary sequence alignment have probably resulted in the reporting of spurious associations which are not supported by more conservative confidence or alignment methodology. At present, the ciliate subphylum Intramacro-nucleata is an unresolved polytomy which may be due to deficiencies in the SSU rRNA gene sequence dataset or indicate that the ciliates radiated into their extant classes by rapid burst-like evolution. (C) 2001 academic Press.
Resumo:
We demonstrate that the time-dependent projected Gross-Pitaevskii equation (GPE) derived earlier [M. J. Davis, R. J. Ballagh, and K. Burnett, J. Phys. B 34, 4487 (2001)] can represent the highly occupied modes of a homogeneous, partially-condensed Bose gas. Contrary to the often held belief that the GPE is valid only at zero temperature, we find that this equation will evolve randomized initial wave functions to a state describing thermal equilibrium. In the case of small interaction strengths or low temperatures, our numerical results can be compared to the predictions of Bogoliubov theory and its perturbative extensions. This demonstrates the validity of the GPE in these limits and allows us to assign a temperature to the simulations unambiguously. However, the GPE method is nonperturbative, and we believe it can be used to describe the thermal properties of a Bose gas even when Bogoliubov theory fails. We suggest a different technique to measure the temperature of our simulations in these circumstances. Using this approach we determine the dependence of the condensate fraction and specific heat on temperature for several interaction strengths, and observe the appearance of vortex networks. Interesting behavior near the critical point is observed and discussed.
Resumo:
Survival and development time from egg to adult emergence of the diamondback moth, Plutella xylostella (L.), were determined at 19 constant and 14 alternating temperature regimes from 4 to 40degreesC. Plutella xylostella developed successfully front egg to adult emergence at constant temperatures from 8 to 32degreesC. At temperatures from 4 to 6degreesC or from 34 to 40degreesC, partial or complete development of individual stages or instars was possible, with third and fourth instars having the widest temperature limits. The insect developed successfully from egg to adult emergence under alternating regimes including temperatures as low as 4degreesC or as high as 38degreesC. The degree-day model, the logistic equation, and the Wang model were used to describe the relationships between temperature and development rate at both constant and alternating temperatures. The degree-day model described the relationships well from 10 to 30degreesC. The logistic equation and the Wang model fit the data well at temperatures 32degreesC. Under alternating regimes, all three models gave good simulations of development in the mid-temperature range, but only the logistic equation gave close simulations in the low temperature range, and none gave close or consistent simulations in the high temperature range. The distribution of development time was described satisfactorily by a Weibull function. These rate and time distribution functions provide tools for simulating population development of P. xylostella over a wide range of temperature conditions.
Resumo:
Fault detection and isolation (FDI) are important steps in the monitoring and supervision of industrial processes. Biological wastewater treatment (WWT) plants are difficult to model, and hence to monitor, because of the complexity of the biological reactions and because plant influent and disturbances are highly variable and/or unmeasured. Multivariate statistical models have been developed for a wide variety of situations over the past few decades, proving successful in many applications. In this paper we develop a new monitoring algorithm based on Principal Components Analysis (PCA). It can be seen equivalently as making Multiscale PCA (MSPCA) adaptive, or as a multiscale decomposition of adaptive PCA. Adaptive Multiscale PCA (AdMSPCA) exploits the changing multivariate relationships between variables at different time-scales. Adaptation of scale PCA models over time permits them to follow the evolution of the process, inputs or disturbances. Performance of AdMSPCA and adaptive PCA on a real WWT data set is compared and contrasted. The most significant difference observed was the ability of AdMSPCA to adapt to a much wider range of changes. This was mainly due to the flexibility afforded by allowing each scale model to adapt whenever it did not signal an abnormal event at that scale. Relative detection speeds were examined only summarily, but seemed to depend on the characteristics of the faults/disturbances. The results of the algorithms were similar for sudden changes, but AdMSPCA appeared more sensitive to slower changes.
Resumo:
Phylogenetic relationships among 75 species of Lentibulariaceae, representing the three recognized genera, were assessed by cladistic analysis of DNA sequences from the plastid rps16 intron and the trnL-F region. Sequence data from the two loci were analyzed both separately and in combination. Consensus trees from all analyses are congruent, and parsimony jackknife results demonstrate strong support for relationships both between and within each of the three demonstrably monophyletic genera. The genus Pinguicula is sister to a Genlisea-Utricularia clade, the phylogenetic structure within this clade closely follows Taylor's recent sectional delimitations based on morphology. Three principal clades are shown within Utricularia, with the basal sections Polypoinpholyx and Pleiochasia together forming the sister lineage of the remaining Utricularia species. Of the fundamental morphological specializations, the stoloniferous growth form apparently arose independently within Genlisea and Utricularia three times, and within Utricularia itself, perhaps more than once. The epiphytic habit has evolved independently at least three times, in Pinguicula, in Utricularia section Phyllaria, and within the two sections Orchidioides and Iperua (in the latter as bromeliad tank-epiphytes). The suspended aquatic habit may have evolved independently within sections Utricularia and Vesiculina. Biogeographic optimization on the phylogeny demonstrates patterns commonly associated with the boreotropics hypothesis and limits the spatial origin of Lentibulariaceae to temperate Eurasia or tropical America.