992 resultados para Density-Functional Theory
Resumo:
The optical-absorption spectrum of a cationic Ag0 atom in a KCl crystal has been studied theoretically by means of a series of cluster models of increasing size. Excitation energies have been determined by means of a multiconfigurational self-consistent field procedure followed by a second-order perturbation correlation treatment. Moreover results obtained within the density-functional framework are also reported. The calculations confirm the assignment of bands I and IV to transitions of the Ag-5s electron into delocalized states with mainly K-4s,4p character. Bands II and III have been assigned to internal transitions on the Ag atom, which correspond to the atomic Ag-4d to Ag-5s transition. We also determine the lowest charge transfer (CT) excitation energy and confirm the assignment of band VI to such a transition. The study of the variation of the CT excitation energy with the Ag-Cl distance R gives additional support to a large displacement of the Cl ions due to the presence of the Ag0 impurity. Moreover, from the present results, it is predicted that on passing to NaCl:Ag0 the CT onset would be out of the optical range while the 5s-5p transition would undergo a redshift of 0.3 eV. These conclusions, which underline the different character of involved orbitals, are consistent with experimental findings. The existence of a CT transition in the optical range for an atom inside an ionic host is explained by a simple model, which also accounts for the differences with the more common 3d systems. The present study sheds also some light on the R dependence of the s2-sp transitions due to s2 ions like Tl+.
Resumo:
Slab and cluster model spin-polarized calculations have been carried out to study various properties of isolated first-row transition metal atoms adsorbed on the anionic sites of the regular MgO(100) surface. The calculated adsorption energies follow the trend of the metal cohesive energies, indicating that the changes in the metal-support and metal-metal interactions along the series are dominated by atomic properties. In all cases, except for Ni at the generalized gradient approximation level, the number of unpaired electron is maintained as in the isolated metal atom. The energy required to change the atomic state from high to low spin has been computed using the PW91 and B3LYP density-functional-theory-based methods. PW91 fails to predict the proper ground state of V and Ni, but the results for the isolated and adsorbed atom are consistent within the method. B3LYP properly predicts the ground state of all first-row transition atom the high- to low-spin transition considered is comparable to experiment. In all cases, the interaction with the surface results in a reduced high- to low-spin transition energy.
Resumo:
The chemical properties of single-atomic chains of gold atoms are investigated using density functional calculations. The nanochains are shown to be unusually chemically active with strong chemisorption of oxygen atoms and carbon monoxide. The chemisorption energies vary significantly with the strain/stress conditions for the chain. Oxygen atoms are found to energetically prefer to get incorporated into a chain forming a new type of gold-oxygen nanochain with a conductance of one quantum unit. We suggest that the long bond lengths observed in electron microscopy investigations of gold chains can be due to oxygen incorporation.
Resumo:
Aggregates of oxygen vacancies (F centers) represent a particular form of point defects in ionic crystals. In this study we have considered the combination of two oxygen vacancies, the M center, in the bulk and on the surface of MgO by means of cluster model calculations. Both neutral and charged forms of the defect M and M+ have been taken into account. The ground state of the M center is characterized by the presence of two doubly occupied impurity levels in the gap of the material; in M+ centers the highest level is singly occupied. For the ground-state properties we used a gradient corrected density functional theory approach. The dipole-allowed singlet-to-singlet and doublet-to-doublet electronic transitions have been determined by means of explicitly correlated multireference second-order perturbation theory calculations. These have been compared with optical transitions determined with the time-dependent density functional theory formalism. The results show that bulk M and M+ centers give rise to intense absorptions at about 4.4 and 4.0 eV, respectively. Another less intense transition at 1.3 eV has also been found for the M+ center. On the surface the transitions occur at 1.6 eV (M+) and 2 eV (M). The results are compared with recently reported electron energy loss spectroscopy spectra on MgO thin films.
Resumo:
The electronic structure of an isolated oxygen vacancy in SrTiO3 has been investigated with a variety of ab initio quantum mechanical approaches. In particular we compared pure density functional theory (DFT) approaches with the Hartree-Fock method, and with hybrid methods where the exchange term is treated in a mixed way. Both local cluster models and periodic calculations with large supercells containing up to 80 atoms have been performed. Both diamagnetic (singlet state) and paramagnetic (triplet state) solutions have been considered. We found that the formation of an O vacancy is accompanied by the transfer of two electrons to the 3d(z2) orbitals of the two Ti atoms along the Ti-Vac-Ti axis. The two electrons are spin coupled and the ground state is diamagnetic. New states associated with the defect center appear in the gap just below the conduction band edge. The formation energy computed with respect to an isolated oxygen atom in the triplet state is 9.4 eV.
Resumo:
The mechanism of generation of atomic Na and K from SiO2 samples has been studied using explicitly correlated wave function and density functional theory cluster calculations. Possible pathways for the photon and electron stimulated desorption of Na and K atoms from silicates are proposed, thus providing new insight on the generation of the tenuous Na and K atmosphere of the Moon.
Resumo:
The electronic structure of the molecular solid Ni(tmdt)2, the only well characterized neutral molecular metal to date, has been studied by means of first-principles density functional calculations. It is shown that these calculations correctly describe the metallic vs semiconducting behavior of molecular conductors of this type. The origin of the band overlap leading to the metallic character and the associated Fermi surfaces has been studied.
Resumo:
The interface of MgO/Ag(001) has been studied with density functional theory applied to slabs. We have found that regular MgO films show a small adhesion to the silver substrate, the binding can be increased in off-stoichiometric regimes, either by the presence of O vacancies at the oxide film or by a small excess of O atoms at the interface between the ceramic to the metal. By means of theoretical methods, the scanning tunneling microscopy signatures of these films is also analyzed in some detail. For defect free deposits containing 1 or 2 ML and at low voltages, tunnelling takes place from the surface Ag substrate, and at large positive voltages Mg atoms are imaged. If defects, oxygen vacancies, are present on the surface of the oxide they introduce much easier channels for tunnelling resulting in big protrusions and controlling the shape of the image, the extra O stored at the interface can also be detected for very thin films.
Resumo:
The electronic structure and properties of cerium oxides (CeO2 and Ce2O3) have been studied in the framework of the LDA+U and GGA(PW91)+U implementations of density functional theory. The dependence of selected observables of these materials on the effective U parameter has been investigated in detail. The examined properties include lattice constants, bulk moduli, density of states, and formation energies of CeO2 and Ce2O3. For CeO2, the LDA+U results are in better agreement with experiment than the GGA+U results whereas for the computationally more demanding Ce2O3 both approaches give comparable accuracy. Furthermore, as expected, Ce2O3 is much more sensitive to the choice of the U value. Generally, the PW91 functional provides an optimal agreement with experiment at lower U energies than LDA does. In order to achieve a balanced description of both kinds of materials, and also of nonstoichiometric CeO2¿x phases, an appropriate choice of U is suggested for LDA+U and GGA+U schemes. Nevertheless, an optimum value appears to be property dependent, especially for Ce2O3. Optimum U values are found to be, in general, larger than values determined previously in a self-consistent way.
Resumo:
Der Vielelektronen Aspekt wird in einteilchenartigen Formulierungen berücksichtigt, entweder in Hartree-Fock Näherung oder unter dem Einschluß der Elektron-Elektron Korrelationen durch die Dichtefunktional Theorie. Da die Physik elektronischer Systeme (Atome, Moleküle, Cluster, Kondensierte Materie, Plasmen) relativistisch ist, habe ich von Anfang an die relativistische 4 Spinor Dirac Theorie eingesetzt, in jüngster Zeit aber, und das wird der hauptfortschritt in den relativistischen Beschreibung durch meine Promotionsarbeit werden, eine ebenfalls voll relativistische, auf dem sogenannten Minimax Prinzip beruhende 2-Spinor Theorie umgesetzt. Im folgenden ist eine kurze Beschreibung meiner Dissertation: Ein wesentlicher Effizienzgewinn in der relativistischen 4-Spinor Dirac Rechnungen konnte durch neuartige singuläre Koordinatentransformationen erreicht werden, so daß sich auch noch für das superschwere Th2 179+ hächste Lösungsgenauigkeiten mit moderatem Computer Aufwand ergaben, und zu zwei weiteren interessanten Veröffentlichungen führten (Publikationsliste). Trotz der damit bereits ermöglichten sehr viel effizienteren relativistischen Berechnung von Molekülen und Clustern blieben diese Rechnungen Größenordnungen aufwendiger als entsprechende nicht-relativistische. Diese behandeln das tatsächliche (relativitische) Verhalten elektronischer Systeme nur näherungsweise richtig, um so besser jedoch, je leichter die beteiligten Atome sind (kleine Kernladungszahl Z). Deshalb habe ich nach einem neuen Formalismus gesucht, der dem möglichst gut Rechnung trägt und trotzdem die Physik richtig relativistisch beschreibt. Dies gelingt durch ein 2-Spinor basierendes Minimax Prinzip: Systeme mit leichten Atomen sind voll relativistisch nunmehr nahezu ähnlich effizient beschrieben wie nicht-relativistisch, was natürlich große Hoffnungen für genaue (d.h. relativistische) Berechnungen weckt. Es ergab sich eine erste grundlegende Veröffentlichung (Publikationsliste). Die Genauigkeit in stark relativistischen Systemen wie Th2 179+ ist ähnlich oder leicht besser als in 4-Spinor Dirac-Formulierung. Die Vorteile der neuen Formulierung gehen aber entscheidend weiter: A. Die neue Minimax Formulierung der Dirac-Gl. ist frei von spuriosen Zuständen und hat keine positronischen Kontaminationen. B. Der Aufwand ist weit reduziert, da nur ein 1/3 der Matrix Elemente gegenüber 4-Spinor noch zu berechnen ist, und alle Matrixdimensionen Faktor 2 kleiner sind. C. Numerisch verhält sich die neue Formulierung ähnlilch gut wie die nichtrelativistische Schrödinger Gleichung (Obwohl es eine exakte Formulierung und keine Näherung der Dirac-Gl. ist), und hat damit bessere Konvergenzeigenschaften als 4-Spinor. Insbesondere die Fehlerwichtung (singulärer und glatter Anteil) ist in 2-Spinor anders, und diese zeigt die guten Extrapolationseigenschaften wie bei der nichtrelativistischen Schrödinger Gleichung. Die Ausweitung des Anwendungsbereichs von (relativistischen) 2-Spinor ist bereits in FEM Dirac-Fock-Slater, mit zwei Beispielen CO und N2, erfolgreich gemacht. Weitere Erweiterungen sind nahezu möglich. Siehe Minmax LCAO Nährung.
Resumo:
For the theoretical investigation of local phenomena (adsorption at surfaces, defects or impurities within a crystal, etc.) one can assume that the effects caused by the local disturbance are only limited to the neighbouring particles. With this model, that is well-known as cluster-approximation, an infinite system can be simulated by a much smaller segment of the surface (Cluster). The size of this segment varies strongly for different systems. Calculations to the convergence of bond distance and binding energy of an adsorbed aluminum atom on an Al(100)-surface showed that more than 100 atoms are necessary to get a sufficient description of surface properties. However with a full-quantummechanical approach these system sizes cannot be calculated because of the effort in computer memory and processor speed. Therefore we developed an embedding procedure for the simulation of surfaces and solids, where the whole system is partitioned in several parts which itsself are treated differently: the internal part (cluster), which is located near the place of the adsorbate, is calculated completely self-consistently and is embedded into an environment, whereas the influence of the environment on the cluster enters as an additional, external potential to the relativistic Kohn-Sham-equations. The basis of the procedure represents the density functional theory. However this means that the choice of the electronic density of the environment constitutes the quality of the embedding procedure. The environment density was modelled in three different ways: atomic densities; of a large prepended calculation without embedding transferred densities; bulk-densities (copied). The embedding procedure was tested on the atomic adsorptions of 'Al on Al(100) and Cu on Cu(100). The result was that if the environment is choices appropriately for the Al-system one needs only 9 embedded atoms to reproduce the results of exact slab-calculations. For the Cu-system first calculations without embedding procedures were accomplished, with the result that already 60 atoms are sufficient as a surface-cluster. Using the embedding procedure the same values with only 25 atoms were obtained. This means a substantial improvement if one takes into consideration that the calculation time increased cubically with the number of atoms. With the embedding method Infinite systems can be treated by molecular methods. Additionally the program code was extended by the possibility to make molecular-dynamic simulations. Now it is possible apart from the past calculations of fixed cores to investigate also structures of small clusters and surfaces. A first application we made with the adsorption of Cu on Cu(100). We calculated the relaxed positions of the atoms that were located close to the adsorption site and afterwards made the full-quantummechanical calculation of this system. We did that procedure for different distances to the surface. Thus a realistic adsorption process could be examined for the first time. It should be remarked that when doing the Cu reference-calculations (without embedding) we begun to parallelize the entire program code. Only because of this aspect the investigations for the 100 atomic Cu surface-clusters were possible. Due to the good efficiency of both the parallelization and the developed embedding procedure we will be able to apply the combination in future. This will help to work on more these areas it will be possible to bring in results of full-relativistic molecular calculations, what will be very interesting especially for the regime of heavy systems.
Resumo:
Während der letzten 20 Jahre hat sich das Periodensystem bis zu den Elementen 114 und 116 erweitert. Diese sind kernphysikalisch nachgewiesen, so dass jetzt die chemische Untersuchung an erster Selle steht. Nachdem sich das Periodensystem bis zum Element 108 so verhält, wie man es dem Periodensystem nach annimmt, wird in dieser Arbeit die Chemie des Elements 112 untersucht. Dabei geht es um die Adsorptionsenergie auf einer Gold-Ober fläche, weil dies der physikalisch/chemische Prozess ist, der bei der Analyse angewandt wird. Die Methode, die in dieser Arbeit angwandt wird, ist die relativistische Dichtefunktionalmethode. Im ersten Teil wird das Vielkörperproblem in allgemeiner Form behandelt, und im zweiten die grundlegenden Eigenschaften und Formulierungen der Dichtefunktionaltheorie. Die Arbeit beschreibt zwei prinzipiell unterschiedliche Ansätze, wie die Adsorptionsenergie berechnet werden kann. Zum einen ist es die sogenannte Clustermethode, bei der ein Atom auf ein relativ kleines Cluster aufgebracht und dessen Adsorptionsenergie berechnet wird. Wenn es gelingt, die Konvergenz mit der Größe des Clusters zu erreichen, sollte dies zu einem Wert für die Adsorptionsenergie führen. Leider zeigt sich in den Rechnungen, dass aufgrund des zeitlichen Aufwandes die Konvergenz für die Clusterrechnungen nicht erreicht wird. Es werden sehr ausführlich die drei verschiedenen Adsorptionsplätze, die Top-, die Brücken- und die Muldenposition, berechnet. Sehr viel mehr Erfolg erzielt man mit der Einbettungsmethode, bei der ein kleiner Cluster von vielen weiteren Atomen an den Positionen, die sie im Festkörpers auf die Adsorptionsenergie soweit sichergestellt ist, dass physikalisch-chemisch gute Ergebnisse erzielt werden. Alle hier gennanten Rechnungen sowohl mit der Cluster- wie mit der Einbettungsmethode verlangen sehr, sehr lange Rechenzeiten, die, wie oben bereits erwähnt, nicht zu einer Konvergenz für die Clusterrechnungen ausreichten. In der Arbeit wird bei allen Rechnungen sehr detailliert auf die Abhängigkeit von den möglichen Basissätzen eingegangen, die ebenfalls in entscheidender Weise zur Länge und Qualität der Rechnungen beitragen. Die auskonvergierten Rechnungen werden in der Form von Potentialkurven, Density of States (DOS), Overlap Populations sowie Partial Crystal Overlap Populations analysiert. Im Ergebnis zeigt sich, dass die Adsoptionsenergie für das Element 112 auf einer Goldoberfläche ca. 0.2 eV niedriger ist als die Adsorption von Quecksilber auf der gleichen Ober fläche. Mit diesem Ergebnis haben die experimentellen Kernchemiker einen Wert an der Hand, mit dem sie eine Anhaltspunkt haben, wo sie bei den Messungen die wenigen zu erwartenden Ereignisse finden können.
Resumo:
Relativistic density functional theory is widely applied in molecular calculations with heavy atoms, where relativistic and correlation effects are on the same footing. Variational stability of the Dirac Hamiltonian is a very important field of research from the beginning of relativistic molecular calculations on, among efforts for accuracy, efficiency, and density functional formulation, etc. Approximations of one- or two-component methods and searching for suitable basis sets are two major means for good projection power against the negative continuum. The minimax two-component spinor linear combination of atomic orbitals (LCAO) is applied in the present work for both light and super-heavy one-electron systems, providing good approximations in the whole energy spectrum, being close to the benchmark minimax finite element method (FEM) values and without spurious and contaminated states, in contrast to the presence of these artifacts in the traditional four-component spinor LCAO. The variational stability assures that minimax LCAO is bounded from below. New balanced basis sets, kinetic and potential defect balanced (TVDB), following the minimax idea, are applied with the Dirac Hamiltonian. Its performance in the same super-heavy one-electron quasi-molecules shows also very good projection capability against variational collapse, as the minimax LCAO is taken as the best projection to compare with. The TVDB method has twice as many basis coefficients as four-component spinor LCAO, which becomes now linear and overcomes the disadvantage of great time-consumption in the minimax method. The calculation with both the TVDB method and the traditional LCAO method for the dimers with elements in group 11 of the periodic table investigates their difference. New bigger basis sets are constructed than in previous research, achieving high accuracy within the functionals involved. Their difference in total energy is much smaller than the basis incompleteness error, showing that the traditional four-spinor LCAO keeps enough projection power from the numerical atomic orbitals and is suitable in research on relativistic quantum chemistry. In scattering investigations for the same comparison purpose, the failure of the traditional LCAO method of providing a stable spectrum with increasing size of basis sets is contrasted to the TVDB method, which contains no spurious states already without pre-orthogonalization of basis sets. Keeping the same conditions including the accuracy of matrix elements shows that the variational instability prevails over the linear dependence of the basis sets. The success of the TVDB method manifests its capability not only in relativistic quantum chemistry but also for scattering and under the influence of strong external electronic and magnetic fields. The good accuracy in total energy with large basis sets and the good projection property encourage wider research on different molecules, with better functionals, and on small effects.
Resumo:
The interaction of short intense laser pulses with atoms/molecules produces a multitude of highly nonlinear processes requiring a non-perturbative treatment. Detailed study of these highly nonlinear processes by numerically solving the time-dependent Schrodinger equation becomes a daunting task when the number of degrees of freedom is large. Also the coupling between the electronic and nuclear degrees of freedom further aggravates the computational problems. In the present work we show that the time-dependent Hartree (TDH) approximation, which neglects the correlation effects, gives unreliable description of the system dynamics both in the absence and presence of an external field. A theoretical framework is required that treats the electrons and nuclei on equal footing and fully quantum mechanically. To address this issue we discuss two approaches, namely the multicomponent density functional theory (MCDFT) and the multiconfiguration time-dependent Hartree (MCTDH) method, that go beyond the TDH approximation and describe the correlated electron-nuclear dynamics accurately. In the MCDFT framework, where the time-dependent electronic and nuclear densities are the basic variables, we discuss an algorithm to calculate the exact Kohn-Sham (KS) potentials for small model systems. By simulating the photodissociation process in a model hydrogen molecular ion, we show that the exact KS potentials contain all the many-body effects and give an insight into the system dynamics. In the MCTDH approach, the wave function is expanded as a sum of products of single-particle functions (SPFs). The MCTDH method is able to describe the electron-nuclear correlation effects as the SPFs and the expansion coefficients evolve in time and give an accurate description of the system dynamics. We show that the MCTDH method is suitable to study a variety of processes such as the fragmentation of molecules, high-order harmonic generation, the two-center interference effect, and the lochfrass effect. We discuss these phenomena in a model hydrogen molecular ion and a model hydrogen molecule. Inclusion of absorbing boundaries in the mean-field approximation and its consequences are discussed using the model hydrogen molecular ion. To this end, two types of calculations are considered: (i) a variational approach with a complex absorbing potential included in the full many-particle Hamiltonian and (ii) an approach in the spirit of time-dependent density functional theory (TDDFT), including complex absorbing potentials in the single-particle equations. It is elucidated that for small grids the TDDFT approach is superior to the variational approach.