974 resultados para Deciduous Teeth


Relevância:

10.00% 10.00%

Publicador:

Resumo:

辽东栎是我国暖温带落叶阔叶林地带的优势乔木树种之一。通过26年的定位监测,对子午岭辽东栎林种子质量消减、种子萌发与环境条件、实生苗时空分布动态以及对其森林更新的影响等方面进行了初步探讨。结果表明:辽东栎林在子午岭半阳坡、半阴坡和阴坡3种类型中,平均完好种子占种子总数的26.65%;霉变种子占18.72%;动物取食虫蛀种子在阴坡远高于半阴坡和半阳坡,占到种子总数的26.32%;已发芽的种子占其总数的28.31%,且半阴坡>半阳坡>阴坡。每年均有大量种子生产,但在生境与动物的共同作用下,种子数量和质量受到很大影响,多达73.35%的种子失去生命力,直接影响实生苗的形成;地表覆盖物虽能促进种子的快速发芽,但对成苗却是一个物理障碍,影响是负作用的,主要影响因子是地表覆盖物的厚度和含水量;在辽东栎林下虽有一定的实生幼苗分布,但数量极少,平均密度仅为140~120株/hm2,且不同立地条件差异显著,严重影响森林的天然更新。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

由于森林生态系统的复杂性,过去常用统计回归模型模拟它的各种动态现象。但这样的模型不能揭示森林生态系统的内在规律,故可称之为“黑箱”模型。随着对森林生态系统认识的加深,以及电子计算机技术的广泛应用,用来模仿森林生态系统内在结构与功能规律的各种计算机模型得到了极大发展,从而产生一些不同“灰化”程度的森林动态“仿真”模型。本文建立的阔叶红松林生长与演替计算模型(DOPIDE)就属于这样的“灰箱”模型。KOPIDE(for KOrean PIne'DEciduous mixed forests)是在JABOWA(Botkin, 1972)和FORET(Shugart等,1977)两个模型的基础上建立的,它们都可称为GAP模型。KOPIDE模型共涉及八个树种:红松(Pinus koraiensis)、水曲柳(Fraxinus mandshurica)、紫椴(Tilia amurensis)、春榆(Ulmus japonica)、蒙古柞(Quercus mongolica)、色木(Acer mono)、白桦(Betula platyphylla)、以及山杨(Populus davidiana)。建立该模型的理论基础是森林演替的林窗(CAP)动态理论,它以一年的步长模拟了样地里每株树木的整个生长发育过成(即更新、生长和枯死)。虽然KOPIDE是JABOWA和FORET的直接效仿模型,但它的模拟针对性较强,在模型的结构上有了很大改进。它的运行结果表明,KOPIDE模型在树种生物学特性的描写上、在阔叶红松林动态规律的模拟上、以及在择伐生长的预测上都有较好的可靠性,可用来揭示阔叶红松林长时期的更新、生长和演替规律与特征,也可模拟阔叶红松林的各种经营方式,为决策人提供预测性结果,以供参考。经过KOPIDE模型的反复运行与调试,发现各树种在更新、枯死与林窗大小的关系上很不相同。根据这种现象,可将树种划分为四类:1、在较大的林窗下更新,枯死后不产生大林窗;2、更新不需要林窗,死亡后产生的林窗较大;3、更新需要林窗条件,枯死后不产生林窗;4、不在林窗下更新,死亡后也不产生林窗。尽管这样的建有点绝对化和简单化,但从中可以得出几类树种之间复杂的相互关系网。由此把复杂森林生态系统大范围的动态变化过程视为组成其许多同质或异质小林地单元的动态相嵌。林地单元的同质性,决定了它们动态变化的同步性,从而导致整个林分动态的突性或不稳定性;而林地单元的异质性是决定森林生态系统稳定性的关键性因素。这从另一角度为在东北东部山地和发展阔叶红松林提供了较有说服力的理论基础。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

土壤微生物量、可溶性有机碳与氮虽然只占土壤有机碳、氮总量的较小部分,但可以在土壤全碳、氮变化之前反映土壤微小的变化,又直接参与土壤生物化学转化过程,因而在植被恢复过程中,较其它土壤理化性质等能够更好地指示土壤恢复情况。在青藏高原东缘存在大面积的次生人工林替代灌丛或采伐迹地,而关于这些人工林替代后的生态效果和生态过程的评估却十分缺乏,本研究通过评估岷江上游植被恢复重建过程中典型人工替代次生植被凋落物层与土壤碳、氮等养分大小,动态监测土壤微生物生物量、水溶性碳、氮等指标,结合温度与凋落物输入等影响土壤活性有机碳、氮因子的控制试验,系统分析不同人工替代次生植被土壤碳、氮等养分的差异原因,试图寻找低效人工林优化调控与持续管理技术,为区域生态公益林持续管理提供理论和技术依据。主要结论如下: 1. 通过对不同人工替代次生植被凋落物层和土壤碳、氮分析发现,油松和华山松人工林替代次生灌丛后土壤碳、氮含量较灌丛和阔叶人工林低,主要原因可能为凋落物质量(C/N)较差,而引起碳、氮等元素难以归还土壤。进而通过对不同人工替代次生植被凋落物层和土壤微生物生物量、水溶性有机碳、氮等指标的季节性动态模式的分析,发现各次生植被土壤微生物生物量C、N,P以及土壤水溶性碳、氮含量均呈明显季节性动态,呈现秋季明显大于其它季节,冬季最低,在表层土壤最为明显。 2. 油松、华山松人工林凋落物层和土壤水溶性有机碳(WDOC)、土壤水溶性有机氮(WDON)明显低于灌丛和连香树,土壤微生物生物量C、N也以油松和华山松人工林最低,而落叶类植被,如灌丛、连香树和落叶松之间没有明显差异,说明可利用底物的数量和质量差异是影响各次生植被凋落物分解和土壤微生物活性的主要原因。MBC/OC和MBN/ON能较好地指示土壤微生物活性的变化,MBC/OC凋落层总体以灌丛和连香树人工林最高,油松和华山松人工林最低;而土壤中MBC/OC连香树人工最高,华山松人工林最低。说明以油松和华山松为主的人工造林替代乡土阔叶灌丛造成土壤C、N等养分严重匮乏,微生物活性低下是影响其养分周转的主要原因。 3. 从各次生植被凋落物产生看,凋落物年归还量最大的为华山松人工林(5.1×103 kg ha-1),其次为落叶松人工林(4.8×103 kg ha-1),阔叶灌丛林地凋落物产生总量(4.4×103 kg ha-1)略大于油松人工林(4.2×103 kg ha-1),最小的为连香树人工林(3.6×103 kg ha-1);叶是凋落物的主体,落叶类树种月动态表现为单峰型,高峰主要在10-11月,如落叶松、连香树和灌丛林;常绿的松类月动态不明显,各月基本相同,最为明显地为油松林,华山松人工林略有二个小峰,分别出现在11月和5月。落叶阔叶灌丛的凋落物分解速率大于常绿针叶林,如油松和华山松。结合凋落物的产生量和分解速率,不同树种人工林替代次生阔叶灌丛后,人工油松和华山松林枯落物总贮量和厚度明显大于落叶松人工林、灌丛林和连香树人工林,说明以油松和华山松为主的人工造林替代乡土阔叶灌丛延缓了有机物向土壤的顺利归还,不利于土壤C、N等养分循环。 4. 通过控制地面凋落物和地下根系输入有机物对土壤碳、氮的影响研究发现,(1) 单独去除根系以及根系与地面凋落物同时去除处理1年后对表层(0-10cm)土壤WDOC均没有显著影响,而土壤WDON显著增加,油松人工林土壤微生物生物量C、N显著降低,人工落叶松林没有显著差异,说明油松人工林土壤微生物活性对地下碳输入的依赖大于其它次生植被,而落叶松土壤微生物活性对地下碳输入依赖性较小;去除地面凋落物,明显降低了落叶松人工林土壤WDOC,华山松和连香树土壤WDON均较对照显著减少,油松人工林土壤微生物量C较对照显著减少;双倍增加地面凋落物处理对土壤微生物生物量、WDOC和WDON没有明显地增加,相反,连香树、华山松和油松人工林土壤WDON较对照减少。说明油松人工林微生物活性不仅依赖于地下碳输入,而且对地上有机物输入的依赖性也较大;连香树、落叶松和华山松人工林土壤微生物生物量并没有因地面凋落物的去除减少可能与土壤总有机碳含量及活性均较高有关,而双倍增加地面凋落物反而降低了土壤微生物生物量,说明凋落物覆盖后改变了土壤微气候。 5. 碳矿化累积量与有机碳含量和活性有机碳含量之间存在显著地正相关关系。凋落物碳累积矿化量、矿化速率以连香树最高,油松和华山松人工林次之,落叶阔叶灌丛低于常绿针叶纯林,导致其差异的主要原因可能为凋落物产生的时间动态模式不一样,致使凋落物起始分解时间不一致。而土壤层有机碳矿化速率和矿化量以阔叶落叶灌丛和连香树最高,油松和华山松人工土壤最低,再次证实利用针叶纯林恢复植被阻碍了有机质周转与循环。 6. 凋落物累积矿化量与C/N值呈显著地相关关系,并随着温度的升高而明显增加,而土壤累积矿化量与C/N值没有显著相关关系,说明土壤有机碳质量(C/N)对温度的响应不十分明显。通过双指数模型对不同温度下碳矿化过程进行模拟和计算出活性有机碳与惰性有机碳比例,发现温度升高促进了惰性有机碳向活性有机碳的转化,增加了活性有机碳含量,说明温度升高可促进次生植被凋落物与土壤有机质的分解,进而可影响到林地碳源/汇关系的变化。 综上,通过对不同人工替代次生植被凋落物与土壤C、N大小、以及土壤微生物生物量、水溶性C、N等指标动态变化模式研究,结合温度与凋落物数量输入等影响土壤活性C、N因子的综合分析,以油松和华山松人工纯林对山地植被恢复,延缓或阻碍了有机质周转与循环,造成了土壤肥力退化。对现有低效人工纯林改造,应为地面大量有机物分解创造条件。 Although soil microbial biomass, dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) are a small part of total soil organic carbon and nitrogen, they can directly participate in the process of soil biochemical translation and indicate the fine changes before changes of soil total organic carbon and nitrogen occur. So, they are good indexes to indicate soil restoration condition during the process of vegetation rehabilitation. There are large areas of secondary vegetations which substitute for indigenous shrubs in the eastern fringe of Qinghai-Tibet Plateau. However, it is not well known that the ecological effect and process after substitution by different secondary plantations. Based on comparison of soil organic and nitrogen contents in litter layer and soil under different secondary vegetations in upper reaches of Minjiang River, soil microbial biomass, DOC and DON in litter layer and soil were investigated in order to analyze the seasonal dynamic. Combining the effects of temperature, litter input and root exclusion on soil microbial biomass, DOC and DON, we also aim to understand the reason and mechanism of difference in soil carbon and nitrogen contents among different secondary vegetations. The study would contribute to comprehensively understanding C and N cycling processes and provide optimal control and sustainable technology of low-effect plantations in these regions. The results are as follows: (1) Organic carbon and nitrogen in litter layers and soil under different substitution plantations were investigated. The results showed that contents of soil organic carbon and nitrogen were lower in P. tabulaeformis (PT) and P. armandi Franch(PA) than those in native broad-leaf shrub and broad-leaf plantation. The low quality (C/N) of litter in PT and PA plantations caused carbon and nitrogen returning to soil difficultly. Seasonal dynamic of soil microbial carbon (MBC),-nitrogen (MBN),-phosphor (MBP), and WDOC and WDON showed similar pattern, which had the highest values in autumn and the lowest values in winter. (2) WDOC and WDON in litter layers and soil under PT and PA plantations were significantly lower than those in native broad-leaf shrub and Cercidiphyllum japonicum Sieb. et Zucc.(CJ). Soil MBC and MBN were also the lowest, while there were no significant differences among deciduous vegetations, i.e. native broad-leaf shrub, CJ and Larix kaempferi Lamb.(LK) plantation. The results suggested that difference in quantity and quality of available substance was main reason that affected the activity of microbe in soil and litter layer. MBC/OC and MBN/ON were good indexes to indicate the change of soil microbial activity. MBC/OC of litter had the highest value under native broad-leaf shrub and CJ plantation, and had the lowest value in PT and PA plantations, while MBC/OC of soil was the highest under CJ plantation, and was the lowest in PT and PA plantations. These results indicated that PT and PA plantations substituting for native broad-leaf shrub caused deficit of carbon and nitrogen in soil, low microbial activity was a main reason influencing the cycling and turnover of carbon and nitrogen in soil. (3) The annual litter fall production, composition, seasonal dynamic and decomposition of five typical secondary stands in upper reaches of Minjiang River were studied in this paper. The annual litter productions were: PA (5.1×103 kg ha-1), LK(4.8×103 kg ha-1), native broad-leaf shrub (4.4×103 kg ha-1), PT(4.2×103 kg ha-1),CJ(3.6×103 kg ha-1). The litter production of leaves in five secondary vegetations occupied a higher percentage in the annual total litter production than those of other components. The litterfall was mostly producted in the cool and dry period (October-November) for deciduous vegetations and relatively equably producted in every season for evergreen coniferous vegetations. The decomposition rate of leaf litter in the broad-leaf stand was higher than those in evergreen coniferous stand. Combined with annual litter fall production and decomposition rate of leaf litter, we found that stock and depth of litter layer were significantly larger in PT and PA plantations than those in native broad-leaf shrub, LK and CJ plantations. The results confirmed that PT and PA plantations substituting for native broad-leaf shrub delayed organic matter returning to soil and hindered cycling of carbon and nitrogen again. (4) We explored plant litter removal, double litter addition, root trenching, and combining root trenching and litter removal treatments to examine the effects of above- and belowground carbon inputs on soil microbial biomass, WDOC and WDON in four secondary plantations. During the experimental period from June 2007 to July 2008, 1 year after initiation of the treatments, WDOC in soil did not vary in root trenching, and combining root trenching and litter removal treatments, while WDON in soil significantly increased compared with CK treatment. Root trenching reduced soil MBC and MBN in PT plantation, while MBC and MBN in soil did not vary in LK plantation. The rasults implied that soil microbial activity was more dependent on belowground carbon input in PT plantation than those in other secondary plantations, on the contrary, soil microbial activity in LK plantation was not dependent on belowground carbon input. Plant litter removal significantly decreased soil WDOC in LK plantation, decreased WDON in PA and CJ plantations, and also significantly reduced soil MBC in PT plantation. However, double litter addition did not increase soil microbial biomass, WDOC and WDON, on the contrary, soil WDON in CJ, PA and PT plantations were decreased. These suggested that soil microbial activity was not only dependent on belowground carbon input, but also on aboveground organic material input. Double litter addition could change the microclimate and result in the decrease of soil microbial activity in CJ, PA and PT plantations. (5) We measured carbon mineralization in a 107 days incubation experiment in 5℃,15℃ and 25℃. Carbon cumulative mineralization was positively correlated with organic matter and labile organic carbon in litter layer and soil. Cumulative carbon mineralization and mineralization rate of litter layers in PT and PA plantations were higher than that in native broad-leaf shrub. This difference between native broad-leaf shrub and coniferous plantations in cumulative carbon mineralization and mineralization rate of litter layers could be attributed to the initiating time of decomposition due to the difference in seasonal dynamic of litter fall production between two types of secondary plantations. However, cumulative carbon mineralization and mineralization rate in soil were the highest in native broad-leaf shrub and CJ plantation, and were the lowest in PT and PA plantations. This also confirmed that PT and PA plantations substituting for native broad-leaf shrub hindered the cycling and turnover of organic matter again. (6) Carbon cumulative mineralization was positively correlated with C/N in litter layer and increased with temperature increasing, while carbon cumulative mineralization was not correlated with C/N in soil. This indicated that soil organic matter quality (C/N) was insensitive to temperature. Applying bi-exponential model, we computed the percent of labile and stable carbon in different temperature incubation and found that temperature increasing would accelerate the transform from stable carbon to labile carbon and increase the percentage of labile organic carbon. This illuminated that temperature incraesing could facilitate the decomposition of litter and soil organic matter in secondary vegetations and hence affect the relationship between carbon source and sink.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

米亚罗地区是四川西部较为典型的亚高山针叶林区域之一。为建立该地区主要针叶树种岷江冷杉、云杉、紫果云杉和红杉的年轮宽度年表资料,了解不同海拔高度岷江冷杉原始林和不同恢复过程的人工针叶林及次生混交林树木径向生长规律,结合样地调查,用生长锥钻取了树木芯样做年轮生态学分析。芯样经过标准化程序固定和打磨抛光后,用WinDENDRO图像分析系统测量年轮宽度序列,用COFECHA程序交叉定年和控制测量数据质量,用ARSTAN程序建立了4个主要针叶树种的地区年表和不同海拔高度岷江冷杉林及人工针叶林和次生混交林针叶树的样地年表。 4个主要针叶树种年轮宽度年表的平均敏感度低于0.2,而其晚材宽度年表都具相对较高的平均敏感度。早材宽度与年轮总宽度标准化年表间的相关系数均在0.9以上;晚材宽度与年轮总宽度标准化年表间的相关系数则种间差异较大,红杉的最高,岷江冷杉的最低。岷江冷杉晚材宽度与年轮总宽度的相关性从1970年以后明显下降,而其他种的相关系数则随时间变化较小。树种之间标准化年表显著正相关,而云杉与紫果云杉和红杉与岷江冷杉之间相关系数明显较高。年表序列的第1主分量表达了4个树种树木共同径向生长变化格局;第2至第4主分量分别表达了云杉属和冷杉属、常绿针叶树种和落叶针叶树种以及云杉和紫果云杉树木径向生长变化差异。 不同海拔高度的8个岷江冷杉样地年轮宽度年表序列敏感度大体上随海拔高度升高而降低。各样地早材宽度与年轮总宽度年表之间的相关系数均在0.9以上,且随海拔高度变化不大;晚材宽度与年轮总宽度之间的相关系数随海拔高度的变化较大,并有随海拔升高而降低的趋势。样地年表序列之间相关系数差异很大,高海拔样地年表间多为显著正相关;低海拔样地年表间的相关系数变化不一;高海拔和低海拔样地年表之间相关性较差,且多不显著。样地年表的第1主分量能解释年表序列总方差的37.5%,反映了不同海拔高度岷江冷杉林木共同的径向生长变化格局;第2和第3主分量分别解释总方差的24.5%和18.2%,表现出明显的高海拔和低海拔样地树木间不同的径向生长变化,除一些样地例外,它们一般与低海拔样地年表有正相关,与高海拔样地年表有负相关。在那些另外的样地,海拔以外的其他因素可能也影响了树木径向生长变化。不同海拔高度样地林木的生长抑制和生长释放频率在不同时期表现出较大的差异,表明了不同的干扰历史和林木补充时间。 人工针叶林和次生混交林各样地林木早材宽度与其年轮总宽度年表之间相关系数均高达0.9以上;晚材宽度与年轮总宽度年表之间也都显著正相关,但人工针叶林样地的明显较高。样地年表序列之间的相关关系表现为,林分起源和经营管理相似的样地年表之间的相关系数明显较高,如人工针叶林与人工针叶林尽管树种不同,但样地年表之间显著正相关,而与次生混交林样地年表间关系不显著;反之亦然。综合比较各项生长参数及不同时期的树木径向生长速率,人工针叶林树木的胸径增长至少在40年以内是优于次生混交林的同种(或不同种)针叶树的。不同样地林木生长释放和生长抑制及人工针叶林树木胸高断面积增长分析表明,除严重的人为干扰外,林分郁闭后林木密度过大是造成高频率生长抑制的主要原因,在林分发育的适当时期通过抚育间伐等措施调控林分密度,是保证林木胸高断面积在一定时期内保持较高的连年增长的关键。日本落叶松作为引进的树种,在海拔3100 m左右种植表现良好,近30年来各项生长指标均高于林龄相近的云杉人工林,因此,适当用其作为川西亚高山针叶林采伐迹地快速恢复是合理的。 Miyaluo area is one of the typical regions covered by subalpine coniferous forests in western Sichuan province of southwestern China. To develop the regional tree-ring width chronology series for the dominant conifers such as Abies faxoniana, Picea asperata, P. purpurea and Larix potaninii, and to understand the radial growth patterns of conifers in Abies faxoniana natural forest stands at different altitudes, and in coniferous plantations and natural regenerated mixed stands in their different restoring processes as well, increment cores were sampled in the field together with conventional plots investigations for dendroecological analyses. After the increment cores being prepared according to standard procedures, the ring widths (total-ring and intra-ring widths) were measured with a WinDENDRO image-analysis system, and the measured tree-ring sequences were crossdated and quality-controlled with the software COFECHA. Using the software ARSTAN, we developed tree-ring width based chronology series of the four dominant conifers, eight site-specific Abies faxoniana chronologies, and seven site-specific chronologies of conifers in coniferous plantations and natural regenerated mixed stands. Mean sensitivities for total ring width chronologies of the four sampled dominant conifers were all below 0.2, while those for the latewood width chronologies of the same species were relatively much higher. Correlation coefficients between standard earlywood and total ring width chronologies of the four conifers were all above 0.9, but those between standard latewood and total ring width chronologies exhibited differences among species, with the coefficient of Larix potaninii the highest and that of Abies faxoniana the lowest. Correlation coefficients between latewood and total ring width of A. faxoniana obviously decreased from 1920-1970 for successive 50-year segments with 10-years lag analyses, though the same for the other three species changed unnoticeably with time. Tree-ring standard chronologies among species showed significant positive correlations, with the correlation coefficients between chronologies of Picea asperata and P. purpurea, and of Larix potaninii and Abies faxoniana relatively much higher. The first principal component of tree-ring chronologies represented the common radial growth patterns of the four conifers in Miyaluo area. The second, third and fourth PCs expressed the differences in radial growth responses for the genus Picea and Abies, for the evergreen and deciduous confers, and for the two species of the genus Picea, respectively. In general, mean sensitivities of the eight Abies faxoniana site-specific tree-ring width chronologies decreased with increasing altitude. The correlation coefficients between earlywood and total ring width chronologies for all sites reached 0.9, which did not change much with altitude; but those between latewood and total ring width chronologies diversified, with a decreasing tendency from lower altitudinal sites to higher altitudinal sites. Correlation coefficients among site chronologies varied considerably, with significant positive correlations among higher site chronologies, mixed results among lower site chronologies, and poor and insignificant correlations between chronologies of higher site and lower site. The first PC, which represents 37.5% of the total variance, reflected a common radial growth response at sites of different altitudes, and it showed a tendency of explaining more variance with increasing altitude. The second and the third PCs contributed to 24.5% and 18.2% of the total variance, respectively, exhibiting distinctive differences in radial growth responses between low- and high-altitudinal sites. With some exceptions, the radial growth represented by the second and third PCs had a positive correlation with that at the low-altitudinal sites and a negative correlation with that at the high-altitudinal sites. For those exceptional sites, factors other than altitude might also play a role in affecting tree-ring growth variations. Trees in stands of different altitudes showed great differences in frequencies of growth suppressions and releases through times, suggesting different disturbance histories and periods when trees recruiting to the canopy. Correlation coefficients between earlywood and total ring width chronologies for all sites of coniferous plantations and natural regenerated mixed stands were also above 0.9; and the same between latewood width and total ring width chronologies all positively correlated, too, with the coefficients of the coniferous plantations obviously much higher. Correlations among site chronologies showed that the coefficients among sites with similar stand origin and management regimes were much higher than those among sites with different stand origin and management regimes. For example, significant positive correlations were found for chronologies among different coniferous plantations, irrespective of species differences; while insignificant correlations between chronologies of the same conifer from a coniferous plantation and a natural regenerated mixed stand, and vise versa. Integrative comparisons of different tree growth parameters and radial growth rates at different stages indicated that the diameter at breast height (DBH) increments for trees in coniferous plantations were faster than those for trees of the same (or different) species in the natural regenerated mixed stands, at least within their first 40 years of stand development. Analyses of growth releases and suppressions, and basal area increments of trees in different stands demonstrated that over-dense individuals after canopy closure was the main factor resulting in high frequencies of radial growth suppressions, with some exceptions of severe man-made disturbances. Therefore, to ensure a continuous basal area current annual increment in certain periods, tree density controlling through thinning in due time during the stand development process are necessary. It should be mentioned that, as an introduced conifer to Miyaluo area, Larix kaempferi grew quite well at altitude of ca. 3100 m after planting in 1970s. In their near 30 years of stand development, Larix kaempferi trees exhibited faster growth in various parameters than Picea asperata trees of the similar stand age did. Thus we think it reasonable to use Larix kaempferi as a fast restoring species at appropriate sites of cutting blanks of subalpine coniferous forests in western Sichuan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

中国沙棘是一种雌雄异株、风媒传粉的灌木或乔木,在中国西南的卧龙自然保护区有广泛的分布。本研究以采集于四川卧龙自然保护区5 个海拔(1800 m、2200 m、2600 m、3000 m、3400 m)梯度的中国沙棘天然群体为材料,以ISSR 和AFLP 标记技术研究其遗传多样性水平及其遗传结构,旨在了解卧龙地区中国沙棘天然群体的遗传多样性水平以及遗传多样性在群体间、群体内以及雌雄亚群体间的分布和特征,为中国沙棘树种的遗传改良及种质资源保存提供遗传研究背景与实验依据。同时探讨ISSR、AFLP 和RAPD三种标记对中国沙棘天然群体的遗传变异水平和群体间遗传结构的评估能力和各自的优缺点。研究得出以下主要结论: 1. ISSR和AFLP分析都表明卧龙自然保护区的中国沙棘群体拥有较高的遗传变异水平(h = 0.249,HT = 0.305)。出现这种结果的主要原因可能与卧龙自然保护区多变的气候条件和生境的异质度大有关。 2. ISSR 和AFLP 都揭示出卧龙自然保护区中国沙棘群体的遗传多样性随着海拔的增加发生显著的变化,表现为中海拔群体(2200 m 和2600 m)比高海拔群体(3000 m 和3400 m)和低海拔群体(1800 m)有更高的遗传多样性的趋势。出现这种趋势的可能解释是低海拔群体处在相对高温和相对干旱的环境,高海拔群体受到低温和紫外线胁迫,而中海拔群体存在中国沙棘生长的适宜环境。 3. ISSR 和AFLP 分析都表明:卧龙自然保护区中国沙棘的遗传结构遵循分布范围广、交配系统以异交为主的木本植物的通常模式,即大多数的遗传变异存在于群体内,只有少部分的遗传变异存在于群体间。 4. 经Mantel 检测表明,卧龙自然保护区中国沙棘群体间的海拔距离和对应遗传距离之间存在显著的正相关关系,即随着垂直海拔距离的增加,群体间的遗传距离也随之增加。Mantel 检测结果以及聚类分析将卧龙自然保护区5 个不同海拔的中国沙棘群体分为低、中、高海拔群体三组的研究结果都表明,海拔很可能是限制群体间基因交流的主要因素。 5. ISSR 分析发现同一海拔的雌雄亚群体首先聚类的研究结果表明,同一海拔的雌雄亚群体在遗传上最相似。方差分析结果表明只有3.8%的总遗传变异存在于雌雄亚群体间,这可能与雌雄植株间的交配和遗传物质的混合有关。 6. ISSR、AFLP 和RAPD 分析都表明卧龙自然保护区不同海拔的中国沙棘天然群体的遗传多样性水平较高。它们的分析结果估算得到的Nei's 平均基因多样度(h)分别为0.249、0.214 和0.170。从该结果可以看出ISSR 和AFLP 比RAPD 检测到更多的遗传多态性,这很可能是不同标记检测的基因组的位点不同所致。 7. 依据对不同标记系统的比较分析,认为ISSR、AFLP 和RAPD 三种分子标记系统都能成功地用于调查卧龙自然保护区不同海拔的中国沙棘群体的遗传变异水平及遗传变异结构,提供关于中国沙棘天然群体多态性水平和遗传变异分布的有用信息。在三者中,AFLP 具有最高效能指数和标记指数,在确定种间分类关系或鉴别个体方面是一种比较理想的标记。 Hippophae rhamnoides subsp. sinensis, a dioecious and deciduous shrub species,occupies a wide range of habitats in the Wolong Nature Reserve, Southwest China. Ourpresent study investigated the pattern of genetic variation and differentiation among fivenatural populations of H. rhamnoides subsp. sinensis, occurring along an altitudinal gradientthat varied from 1,800 to 3,400 m above sea level in the Wolong Natural Reserve, by usingISSR and AFLP markers to guide its genetic improvement and germplasm conservation. And,comparative study of ISSR, AFLP and RAPD was performed to detect their capacity toestimating the level and pattern of genetic variation occurring among the five elevationpopulations of H. rhamnoides subsp. sinensis, and to discuss their application to the study onplant genetics. The results were list following: 1. The ISSR and AFLP analysis conducted for the H. rhamnoides subsp. sinensispopulations located in the Wolong Natural Reserve of China revealed the presence of highlevels of genetic variation (h = 0.249, HT = 0.305). Besides such features as relatively widedistribution, dominantly outcrossing mating system, and effective seed dispersal by small animals and birds, it is sometimes argued that hard climatic conditions and heterogeneous habitats may also contribute to high levels of diversity. 2. Genetic diversity of H. rhamnoides subsp. sinensis populations was found to varysignificantly with changing elevation, showing a trend that mid-elevation populations (2,200m and 2,600 m) were genetically more diverse than both low-elevation (1,800 m) andhigh-elevation populations (3,000 m and 3,400 m). H. rhamnoides subsp. sinensis is thoughtto be stressed by drought and high temperature at low elevations, and by low temperature athigh elevations. The high genetic variability present in the mid-elevation populations of H.rhamnoides subsp. sinensis is assumed to be related to a greater plant density in the middlealtitudinal zone, where favorable ecological conditions permit its continuous distributioncovering the zone from 2,200 m to 2,600 m above sea level. 3. The genetic structure of H. rhamnoides subsp. sinensis revealed by ISSRs andAFLPs followed the general pattern detected in woody species with widespread distributionsand outcrossing mating systems. Such plants possess more genetic diversity withinpopulations and less variation among populations than species with other combinations oftraits. 4. In the present study, Mantel tests showed positive correlations between altitudinaldistances and genetic distances among populations or subpopulations. The observedrelationship between altitude and genetic distances, and the result of the cluster analysisincluding populations or male subpopulations and classifying the groups into three altitudeclusters suggest that altitude is a major factor that restricts gene flow between populationsand subpopulations. 5. The analysis of molecular variance showed that only 3.8% of the variability residedbetween female and male subpopulations. Such a very restricted proportion of the totalmolecular variance between female and male subpopulations is due to common sexuality andmixing of genetic material between females and males. 6. The analysis based on ISSRs, AFLPs and RAPDs all revealed relatively high levelsof genetic variation among different altitudinal populations of H. rhamnoides subsp. sinensisin Wolong Natural Reserve of China. Their estimates of mean Nei’s gene diversity is equal to0.249, 0.214 and 0.170 respectively, suggesting the higher capacity of detecting geneticvariation of ISSR and AFLP than RAPD. It might be ascribed to their distinct sensitivity todifferent type of genetic variation. 7. Based on the coparative study on ISSR, AFLP and RAPD, we drew a conclusion thatthey all successfully reveal some useful information concerning the level and pattern ofgenetic vatiation occurring among different elevation populations of H. rhamnoides subsp.sinensis. AFLP is a ideal tool to taxonomic study and individual identification for theirhighest efficiency index and marker index among the three marker systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

作为复杂的生态过程之一,土壤侵蚀常常被空间景观异质性影响。深入地研究土壤侵蚀与植被景观的相关性对以减少水土流失为目的的河流中上游生态恢复工作来说十分重要。本文利用遥感和GIS 技术,对岷江源头区的植被景观和土壤侵蚀动态(1974年~2002 年)进行分析,并从景观生态学的角度,系统地研究了整体植被景观和不同的植被景观类型的景观特征与土壤侵蚀量、侵蚀模数以及土壤侵蚀强度的相关性,得出的结论主要有以下几个方面:1. 从植被景观特征与土壤侵蚀量和土壤侵蚀模数的相关性的角度出发,森林能最大限度地控制土壤侵蚀,草地对土壤侵蚀的控制能力不及森林,而且能在一定程度上增加土壤侵蚀。灌丛与土壤侵蚀量和土壤侵蚀模数的关系则比较复杂,还需要进一步地研究。农用地与森林、灌丛、草地等植被类型不同,它的增加将会明显地增加产沙量。随着各景观类型(灌丛除外)分布的镶嵌性的增强,土壤侵蚀量和侵蚀模数会减少。2. 从植被景观特征与土壤侵蚀强度的相关性的角度出发,在景观水平上,植被景观的景观多样性指数、景观破碎度指数、景观形状指数和景观聚集度指数均与土壤侵蚀强度有明显的相关性。在较轻侵蚀强度的区域中的植被景观具有更丰富的多样性和更低的破碎程度,景观的组分和结构都更加复杂,景观斑块的形状也比较复杂。同时,植被景观的空间异质性也较强。3. 从不同景观类型对土壤侵蚀强度的控制能力大小看:针叶林> 落叶阔叶林>针阔混交林> 灌丛> 草地> 农用地。同时,对于除农用地以外的其他植被景观类型来说,增加其平均斑块面积和形状的复杂性会在一定程度上减少土壤侵蚀强度。而对于农用地来说,斑块形状的简单化以及分布形式的均匀镶嵌化则是减少土壤侵蚀强度的有效手段。 As a complex ecological process, soil erosion is affected by the spatial landscape heterogeneity.The relation between soil erosion and landscape characteristic weights a lot in ecosystemrestoration that aim to control the soil erosion in watershed. By means of RS and GIStechniques, this study analyzed dynamic variations in landscape characteristic and soil erosionin the Minjiang headwater region over a period of 28 years to elucidate the interrelationshipsbetween landscape characteristics and soil erosion. The results are as follows:1. In terms of relation between landscape characteristics and soil erosion module, forest canmitigate the soil erosion much better than grass. The relation between shrub and soil erosionmodule is rather complicated that requests further more study to confirm how those two factorscorrelated with each other. Cultivated land differs from other landscape classes in creatingconditions most favorable for soil erosion. Moreover, the dispersion of all landscape classes,except for shrub, correlates with soil module negatively.II2. In terms of relation between landscape characteristics and soil erosion strength, the diversityindex, fragment index, shape index and contagion index of the vegetation in Minjiangheadwater region at landscape-level correlated with soil erosion clearly. Vegetation landscapein No and Slight erosion region is more diverse, fragmental and constructed in more complexway. The shape of those vegetation patches is also more complicated. The spatial heterogeneityof the vegetation landscape is much more evident than that located in moderate and strong erosion region too.3. At class-level, different landscape classes affected soil erosion strength in different ways.Taking the mitigating effect on erosion strength into consideration, landscape classes can bearranged in this turn: coniferous forest > Deciduous forest > Mixed forest > Shrub > Grassland > Cultivated land. At the same time, for most landscape classes, except for cultivated land,increase the mean patch size and complicate the shape of patch will help to relieve the erosionstrength. However, for cultivated land, simplifying the shape of patch and scattering thepatches have the same effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

近十年,植物群体遗传学的研究飞速发展,然而与海拔相关的植物群体遗传结构和遗传变异研究却相对较少。到目前为止,还不清楚遗传变异与海拔之间是否有一个通用的格局。在山区,各种生态因子,如温度、降水、降雪、紫外线辐射强度以及土壤成分都随海拔梯度急剧变化,造成了即使在一个小的空间区域,植被类型变化显著,这种高山环境的异质性和复杂性为我们研究植物群体遗传结构和分化提供了方便。沙棘(Hippophea)属于胡颓子科(Elaeagnaceae)为多年生落叶灌木或乔木,雌雄异株,天然种群分布极为广泛。中国沙棘(H. rhamnoides subsp. sinensis)是沙棘属植物中分布较广的一个亚种,种内形态变异非常丰富,加之其具有独特的繁育系统和广泛的生态地理分布,是研究沙棘属植物遗传变异和系统分化的理想材料。本文从1,800 m 到3,400 m 分5 个海拔梯度进行取样,用RAPD 和cpSSR 分子标记研究了卧龙自然保护区中国沙棘天然群体的遗传结构和遗传变异。5 个取样群体依次标记为A、B、C、D 和E,它们分别代表分布在海拔1,800,2,200,2,600,3,000 和3,400 m 的5 个天然群体。RAPD实验用11 条寡核苷酸引物,扩增得到151 个重复性好的位点,其中143 个多态位点,多态率达94.7%。在5 个沙棘群体中,总遗传多样性值(HT)为0.289,B群体内的遗传多样性值为0.315,这完全符合沙棘这种多年生、远交的木本植物具有高遗传变异的特性。5 个群体内遗传多样性随海拔升高呈低-高-低变异趋势,在2,200 m海拔处的B群体遗传多样性达最大值0.315,3,400 m海拔处的E群体则表现最小仅0.098。5 个群体间的遗传分化值GST=0.406,也即是说有40.6%的遗传变异存在于群体间,1,800 m海拔处的A群体与其它群体的明显分离是造成群体间遗传分化大的原因。UPGMA聚类图和PCoA散点图进一步确证了5 个群体间的关系和所有个体间的关系。最后,经过Mantel检测,遗传距离与海拔表现了明显的相关性(r = 0.646, P = 0.011)。cpSSR 实验中,经过对24 对cpSSR 通用引物筛选,11 对引物能扩增出特异性条带,只有2 对引物(ccmp2 和ARCP4)呈现多态性。4 个等位基因共组合出4 种单倍型,单倍型Ⅰ出现在A 群体的所有个体和B 群体的8 个个体中,C、D、E 三个群体均不含有,而单倍型Ⅱ出现在C、D、E 三个群体的所有个体及B 群体的18 个个体中,A 群体不含有。另外两种单倍型Ⅲ和Ⅳ为稀有类型,仅B 群体中的4 个个体拥有。这种单倍型分布模式和TFPGA 群体聚类图揭示了,C、D、E 群体可能来源于同一祖先种,而A 群体却是由另一祖先种发展起来的,B 群体则兼具了这两种起源种的信息,这可能是因为在历史上的某一时期,在中国沙棘群体高山分化的过程中,B 群体处某个或者某些个体发生了基因突变,具备了适应高海拔环境的能力,产生了高海拔沙棘群体的祖先种。 In recent ten years, studies about population genetics of plants developed rapidly,whereas their genetic structure and genetic variation along altitudinal gradients have beenstudied relatively little. So far, it is uncleared whether there is a common pattern betweengenetic variation and altitudinal gradients. In the mountain environments, importantecological factors, e.g., temperature, rainfall, snowfall, ultraviolet radiation and soil substratesetc., change rapidly with altitudes, which cause the vegetation distribution varying typically,even on a small spatial scale. The mountain environments, which are heterogeneous andcomplex, facilitate and offer a good opportunity to characterize population genetic structureand population differentiation.The species of the genus Hippophae L. (Elaeagnaceae) are perennial deciduous shrubs ortrees, which are dioecious, wind-pollinated pioneer plants. The natural genus has a widedistribution extending from Northern Europe through Central Europe and Central Asia toChina. According to the latest taxonomy, the genus Hippophae is divided into six species and12 subspecies. The subspecies H. rhamnoides ssp. sinensis shows significant morphologicalvariations, large geographic range and dominantly outcrossing mating system. Thesecharacteristics of the subspecies are favourable to elucidate genetic variation and systemevolution. To estimate genetic variation and genetic structure of H. rhamnoides ssp. sinensisat different altitudes, we surveyed five natural populations in the Wolong Natural Reserve at altitudes ranging from 1,800 to 3,400 m above sea level (a.s.l.) using random amplifiedpolymorphic DNA markers (RAPDs) and cpSSR molecular methods. The five populations A,B, C, D, and E correspond to the altitudes 1,800, 2,200, 2,600, 3,000 and 3,400 m,respectively.Based on 11 decamer primers, a total of 151 reproducible DNA loci were yielded, ofwhich 143 were polymorphic and the percentage of polymorphic loci equaled 94.7%. Amongthe five populations investigated, the total gene diversity (HT) and gene diversity within population B equaled 0.289 and 0.315, respectively, which are modest for a subspecies of H.rhamnoides, which is an outcrossing, long-lived, woody plant. The amount of geneticvariation within populations varied from 0.098 within population E (3,400 m a.s.l.) to 0.315within population B (2,200 m a.s.l.). The coefficient of gene differentiation (GST) amongpopulations equaled 0.406 and revealed that 40.6% of the genetic variance existed amongpopulations and 59.4% within populations. The population A (1,800 m a.s.l.) differed greatlyfrom the other four populations, which contributes to high genetic differentiation. A UPGMAcluster analysis and principal coordinate analyses based on Nei's genetic distances furthercorroborated the relationships among the five populations and all the sampling individuals,respectively. Mantel tests detected a significant correlation between genetic distances andaltitudinal gradients (r = 0.646, P = 0.011).Eleven of the original 24 cpSSR primer pairs tested produced good PCR products, onlytwo (ccmp2 and ARCP4) of which were polymorphic. Four total length variants (alleles) werecombined resulting in 4 haplotypes. The haplotype was present in all individuals of Ⅰpopulation A and 8 individuals of populations B, the other three populations (C, D and Epopulations) did not share. The haplotype was present in all individuals of populations C, D Ⅱand E and 18 individuals of populations B, population A did not share. The other twohaplotypes and were rare haplotypes, which were only shared in 4 individuals of Ⅲ Ⅳpopulation B. The distribution of haplotypes and TFPGA population clustering map showedthat the populations C, D and E might be origined from one ancestor seed and population Amight be from another, whereas population B owned information of the two ancestor seeds. Itwas because that gene mutation within some individual or seed in the location of population Bwas likely to happen in the history of H. rhamnoides, which was the original ancestor of thehigh-altitude populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

常绿阔叶林以其富饶的生物资源、丰富的生物多样性和巨大的生态与环境效益引起了人们越来越大的重视,它的研究已成为国际植被科学界关注的主题之一。我国分布着世界上面积最大的亚热带常绿阔叶林,在世界植被中具有重要地位,它的分布表现出明显的地带性差异,存在着多样的植物群系及其对应的气候特征。但是在植物功能性状领域,与全球范围其它生物群系相比,常绿阔叶林物种的研究较少,其功能性状间、功能性状与环境间的关系尚不清晰。 本研究以常绿阔叶林木本植物的当年生小枝为对象,试图从小枝水平上的生物量分配格局、叶片大小与数量的权衡关系、小枝茎的构型效应、叶片元素化学计量学,以及小枝大小的成本与效益分析等方面,较为系统地揭示小枝水平上的植物功能性状间及其与气候间的关系。因此,在华西雨屏带内部的不同纬度设置峨眉-青城-雷波-平武的温度梯度进行比较,并对有降水差异的川西南偏湿性(雷波)与偏干性常绿阔叶林(西昌)进行对比研究,同时在不同山体进行不同海拔梯度的比较研究。 本文主要研究结果如下: (1)小枝生物量分配格局叶水平上,叶片重-叶柄重(Y轴vs.X轴,下同)呈斜率小于1的异速生长关系,表明叶柄对叶内部的生物量分配影响显著。小枝水平上,叶和茎的生物量以及它们与小枝总生物量间基本呈等速生长关系,表明大的小枝或大叶物种不一定在叶生物量的分配上占优势。不同生活型间,在小枝或者茎的生物量一定时,常绿物种叶片的生物量比例较落叶物种稍高。与温度和水分较优越(峨眉及其低海拔)的生境相比,在相对低湿(螺髻)与低温(平武)的生境中的植物会减少对叶的投入而增加对支撑部分的投资比例。 (2)小枝叶片大小与数量的权衡无论是不同气候带还是不同生活型以及不同海拔梯度,叶片大小与出叶强度基本都是呈负的等速生长关系,表明了叶片大小-数量在小枝水平上的权衡。在不同气候梯度的对比中,叶片数量(出叶强度)一定时,高温和高水分生境(峨眉)比低温(平武)和低湿(螺髻山)生境中的物种的叶片大小(质量和面积)更大,表明不同生境的比较中,小的叶片可能具有较高的出叶强度和更高的适合度收益。“出叶强度优势”(Leafingintensitypremium)假说可能不适宜解释不同生境物种叶片大小差异。 (3)小枝茎的构型效应虽然茎长和茎径与叶片大小都呈正相关关系,与出叶强度都呈负相关关系,但茎长/茎径比与叶/茎生物量之比呈负相关关系;与叶片的大小呈负相关关系,与出叶强度呈正相关关系。这说明小枝构型能影响小枝叶/茎生物量分配和叶大小-数量的权衡关系。其影响机制可能是小枝内部的顶端优势。另外,茎长/茎径比在低湿和低温等不利生境中的植物中较高,而在降水和温度较适宜环境中较低。 (4)叶片C、N、P化学计量学N含量和P含量,C/N比和比叶重(LMA,leafmassperarea)呈正的等速生长关系,而N和LMA,P和LMA呈负的等速生长关系。在LMA一定时,C/N比随着生境胁迫压力的增加而降低,N、P含量随着生境压力的增加而增加。在P含量一定时,N含量随着生境压力的增加而降低,即N/P比在生境条件较优(峨眉及其低海拔)时较高。常绿和落叶植物叶片的N/P比没有差异,在LMA一定时,常绿植物的N、P含量较高、C/N比较低。总之,植物的C、N、P化学计量学特征受叶片属性如LMA与气候,及其相互作用的影响。 (5)小枝大小的代价与效益分析、TLA与小枝总重总叶面积(TLA,totalleafarea,Y轴,下同)与总叶重(X轴)均呈斜率小于1的异速生长关系,TLA与小枝横切面积呈斜率为1的等速生长关系。表明叶片面积的增加总是小于叶重和小枝总重的增加,随着小枝的增大,它的叶面积支撑效率下降。在热量和降水优越的生境(峨眉及其低海拔)中,相同小枝重或者相同茎横切面积的小枝,其叶面积支撑效率较低湿与低温环境下(螺髻山、平武及高海拔)的高。 总体上,本文初步研究了小枝水平上可能存在的以下三种权衡关系:叶-茎生物量分配权衡;叶片大小-数量的权衡;小枝茎长-茎径的权衡关系,以及气候要素等对这三种权衡关系的影响。在此基础上,我们还讨论了这些权衡关系的可能形成机制,及其与物种生态适应的联系。本研究丰富了生活史对策中关于权衡关系的研究内容,为我国常绿阔叶林功能生态学研究积累了材料。 Evergreen broad-leaved forests are attracting much more attention from vegetation ecologists than ever before because of their abundant nature resource and biological diversity, and also great ecological benefits. China has the largest distribution of subtropical evergreen broad-leaved forests (temperate rainforests) that are typical and representative in the world. The forests span over more than ten degrees in latitude and more than 30 degrees in longitude, providing an ideal place to study plant functional ecology, i.e., the climatic effect on plant functional traits and the relationship between the traits. However, relative to the other biomes, there are few studies addressing functional ecology of the plant species from subtropical evergreen broad-leaved forests. In this study, I focused on the leaf size-twig size spectrum of the woody species of subtropical evergreen broad-leaved forests in southwestern china. I collected data on leaf size and number, twig size in terms of both mass and volume, and stem architecture from five temperate mountains, and then I analyzed the relationships between leaf and stem biomass and between leaf size and number, the effect of stem length/diameter ratio on biomass allocation and on the relationship between leaf size and number, leaf C:N:P stoichiometry, and the twig efficiency of supporting leaf area in relation to twig size. I also addressed the climate effect on the spectrum. The temperature gradient from warm to cool sites was represented by Emei Mountain, Qingchengshan, Leibo, and Pingwu, and the rainfall gradient was assumed to emerge from the comparison between Leibo (High) and Luojishan (Low). In addition, altitudinal effects were analyzed with comparisons between low and high altitudes for each mountains. My main results are as follows. Isometric relationships were found between leaf mass and twig mass and between lamina mass and twig mass, suggesting that the biomass allocation to leaves or laminas was independent of twig mass. Petiole mass disproportionably increase with respect to lamina mass and twig mass, indicating the importance of leaf petioles to the within-twig biomass allocation. In addition, the investigated species tended to have a larger leaf and lamina mass, but a smaller stem mass at a given twig mass at favorable environments including warm and humid sites or at low altitude than unfavorable habitats, which might be due to the large requirements in physical support and transporting safety for the species living at unfavorable conditions. Moreover, the evergreen species invested more in leaves and laminas than the deciduous at given stem or twig biomass within any specified habitats. Negative, isometric scaling relationships between leaf number and size broadly existed in the species regardless of climate, altitude, and life forms, suggesting a leaf size/number trade-off within twigs. Along the climatic gradients, at given leaf number or leafing intensity, the leaves were larger in the favorable environments than the poor habitats. This suggested that the fitness benefit gained by small leaves could be larger than that with high leafing intensity in the stressful sites. I concluded that the “leafing intensity premium” hypothesis was not appropriate to interpreting between-habitat variation in leaf size. Both stem length and diameter were positively correlated to leaf size but negatively correlated to leafing intensity. The ratio of stem length to diameter was negatively correlated to leaf mass fraction, and it was negatively correlated to leaf size but positively correlated to leafing intensity. This suggested that the stem architecture influenced twig biomass allocation and the relationship between leaf size and number. The mechanism underlying the architectural effect might lie in the apical dominance within twig. Moreover, the ratio was greater in unfavorable habitats but smaller in favorable environments. Positive, isometric relationships were found between N and P contents per leaf mass, and between C/N ratio and leaf mass per area (LMA), but N and P contents scaled negatively to LMA. C/N ratio decreased but N and P increased with increasing habitat stress at a given LMA. N content declined with increasing habitat stress at given P content. These indicated that N/P and C/N were higher but LMA was lower in favorable habitats than in the other circumstances. The evergreen and deciduous species were non-heterogeneous in N/P, but the evergreen species have higher N and P contents and lower C/N than the deciduous ones. In general, C:N:P stoichiometry were related to both climatic conditions and other important functional traits like LMA. Total leaf area (TLA) allometricly scaled to leaf mass with a slope shallower than 1, similar to the relationship between TLA and total twig mass (leaf mass plus stem mass), suggesting that TLA failed to keep pace with the increase of leaf mass and twig size. However, TLA scaled isometricly to twig cross-sectional area. Thus, it could be inferred that the twig efficiency of displaying leaf area decreased with increasing twig size. In addition, the efficiency at a given twig size was large in favorable than unfavorable habitats. In general, in this preliminary study, I studied three tradeoff relationships within twigs, i.e., between leaf and stem biomass, between leaf number and size, and between stem length and diameter, as well as the climatic effect on the relationships. I discussed the mechanisms underlying the tradeoff relationships in view of biophysics and eco-physiology of plants. I believe that this study can serve as important materials advancing plant functional ecology of subtropical forest and that it will improve the understanding of life history strategies of plants from this particular biome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

植物功能生态学研究不仅提供了植物生理生态学与生态系统生态学的连接,还为植物种群生活史对策研究提供了材料。Westoby 等 (2002) 提出了利用植物功能性状变量的主导维度来确定和量化植物生活史的生态适应策略。在他们所提出四个主导维度中,叶大小-小枝大小是研究相对较少的一维;其内部各组分的关系、对环境的响应,以及与其它重要维度的关系,目前的理解非常有限。 本研究以贡嘎山不同海拔不同功能群物种为研究对象,采用种间比较和系统发生独立性比较等研究方法,系统研究了植物的功能特征及其相关性在不同生境及不同功能群间的差异,旨在分析不同功能群物种的叶大小-小枝大小的成本和收益。其研究结果将有助于我们理解植物生活史对策的进化,进而理解物种共存和维持物种多样性的机制。主要研究结果如下: 1. 叶大小-小枝大小关系 小枝茎横截面积与单叶面积和总叶面积均呈异速生长关系,即总叶面积和单叶面积的增加比茎横截面积的增加速度快。但是,总叶面积和叶片干重的增加却基本上与小枝茎干重的增加等速。系统发生独立性比较研究的结果与此相一致。表明,在某一给定的茎投入时,至少大叶大枝物种不比小叶小枝物种在支撑叶面积和叶片干重方面具有优势。同时,在某一给定的小枝茎投入时,常绿阔叶物种比落叶阔叶物种支撑更少的叶面积。在茎干重与总叶面积的关系中,落叶复叶物种比落叶单叶物种具有更高的y轴截距,表明复叶物种比单叶物种在展叶面积方面更有效。复叶物种与单叶物种相比,通常具有较大的叶大小和小枝大小。 2. 叶大小-叶数量关系 叶大小与数量间在不同的叶片习性、不同的叶片形态以及不同的生境类型的物种间均存在稳定的负的等速生长关系,且这种关系在系统发生独立性比较时依然成立。然而,在某一给定的出叶强度 (单位小枝的叶数量) 时,常绿阔叶物种比落叶物种具有更小的叶面积。而在给定体积基础上的出叶强度时,落叶复叶物种的叶面积显著大于落叶单叶物种,且复叶物种比单叶物种具有更大的叶大小和更小的出叶强度。但是,叶大小与数量间的关系在不同的海拔间并没有显著的差异。 3. 小枝大小-总叶面积关系 在不同的生活型或不同的生境下,小枝上总叶面积与茎干重和小枝干重均呈正的异速生长关系,且斜率显著小于1.0,表明小枝上总叶面积的增加都不能赶上小枝及茎大小的增加。这种“收益递减”表明随着小枝干重的增加,光截取的收益递减。此外,叶面积比 (总叶面积与小枝干重的比值) 与单叶干重呈显著负相关关系,系统发生独立性比较的结果与此相一致。根据以上结果,可以推测,大叶的物种在质量较好的生境中出现,而群落内部小枝茎的寿命较长的物种可以拥有较大的叶片。 4. 叶片色素浓度-LMA关系 随着海拔的升高,阔叶木本植物和草本植物的叶片色素浓度减少,叶绿素a/b和类胡萝卜素/叶绿素比值以及比叶重 (LMA) 增加。然而,在草本植物中的色素浓度、色素比值和LMA的变化比阔叶木本植物的更明显。同时,LMA与叶片色素浓度呈负相关关系,但是在落叶物种中的LMA对色素浓度的影响比常绿阔叶物种更强烈。总之,草本植物的叶片特征对海拔梯度的变化似乎比木本植物更敏感,LMA对叶片色素的保护作用在落叶物种中比在常绿阔叶物种显得更重要。这些结果表明不同生活型物种可能采取不同的保护机制来降低叶绿体器官的损伤和增加他们的碳获取能力。 Studies on plant functional ecology not only bridge plant eco-physiology and ecosystem functioning, but also enrich plant population biology. As pointed out by Westoby et al (2002), plant life history strategies can be identified and quantified by four leading dimensions of variations in plant functional traits, i.e., seed size/output, leaf mass per area and leaf life span, plant height, and leaf size-twig size. Compared to the other dimensions, the cost/benefit of the leaf size-twig size spectrum has scarcely been analyzed in relation to environmental gradients and life form types, and the adaptive significance of this spectrum is not fully understood. In the present study, the relationships between functional traits of plant twigs are determined for the species with different life forms along an altitudinal gradient of Gongga Mountain with both cross-species analysis and evolutionary divergence analysis. The primary objective of this study is to examine the cost/benefit of leaf size-twig size in plants. The study results are supposed to provide insights into the understanding of the mechanism of species coexistences. The results are shown in the following. 1. The relationship between leaf size and twig size Twig cross-sectional area allometrically scaled with both individual leaf area and total leaf area supported by the twigs. However, the increase in total lamina mass/area was generally proportional to the increase in stem mass. These correlations between trait variations were significant in both interspecies analysis and phylogenetically independent comparison (PIC) analysis, which indicated that thick-twigged/large-leaved species, at least, do not have an advantage in supporting leaf/lamina area and lamina mass for the same twig stem investment than thin-twigged/ small-leaved species. Meanwhile, the evergreen broad-leaved species supported a smaller leaf area for the same twig stem investment in terms of both cross-sectional area and stem mass than the deciduous species. The deciduous compound-leaved species have a higher y-intercept in the scaling relationship of twig stem mass versus total leaf area than the deciduous simple-leaved species, indicating that compound-leaved species were more efficient in displaying leaf area. The compound-leaved species were larger in both leaf size and twig size than their counterpart in the present study. 2. The relationship between leaf size and leaf number Significantly negative and isometric scaling relationships between leaf size and leafing intensity (leaf number per twig mass or volume) were found to be consistently conserved across species independent of leaf habit, leaf form and habitat type. The negative correlations between leaf size and leafing intensity were also observed across correlated evolutionary divergences. However, leaf area was smaller in the evergreen broad-leaved species at a given leafing intensity than in the deciduous species. The deciduous compound-leaved deciduous species were higher in leaf area than deciduous simple-laved species at a given volume-based leafing intensity. Moreover, the compound-leaved deciduous species were larger in leaf size but smaller in leafing intensity than their simple counterparts. No significant difference was found in the scaling relationships between altitudes. 3. The relationship between twig size and total leaf area Leaf area was found to scale positively and allometrically with both stem and twig mass (stem mass plus leaf mass) with slopes significantly smaller than 1.0, independent of life form and habitat type, indicating that the increase in total leaf area fails to keep pace with increasing twig size and stem size. This ‘diminishing returns’ suggests that the benefit of light intercept decreased with increasing twig mass. Moreover, the leaf area ratio (the ratio of total leaf area to stem or twig mass) correlated negatively with individual leaf mass. The results of PIC were consistent with the correlations. According to the results, it is speculated that large-leaved species may be favored when habitat is good and when stem longevity are long within community. 4. The relationship between leaf pigment concentrations and leaf mass per area With increasing altitude, the concentrations of pigments decreased, but the ratios of chlorophyll a/b and carotenoid/chlorophyll, and LMA increased, in both the broad-leaved woody species and herbaceous species groups. However, the changes in the pigment concentrations, ratios and LMA were more profound in the herbaceous species than in the woody species. In addition, pigment concentrations were negatively correlated with LMA in each life form type and in the pooled dataset. However, the LMA effect on leaf pigment concentrations was more profound in the deciduous species than in the evergreen braode-leaved species. In general, herbaceous species seemed more sensitive to the increasing altitude compared to woody species, and LMA seemed to be a more important mechanism for protecting leaf pigments in deciduous species than in evergreen broad-leaved species. These results suggested that the species with different life forms may employ different protective mechanisms to decrease the chloroplast apparatus damage and increase their carbon gain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

黄龙世界自然遗产地岷江冷杉林(Abies faxoniana)生境类型多样,群落结构复杂,群落植物种类组成多样性丰富。揭示不同生境的生物多样性及其差异是认识生物多样性格局、形成及维持机制的前提和进行多样性保育的基础。本文采用样方法对黄龙钙化滩生境、阴坡非钙化生境及半阳坡非钙化生境的岷江冷杉原始林植物群落结构及植物多样性进行了研究。结果表明: 黄龙岷江冷杉林具有明显的复层异龄结构,垂直结构明显,乔木、灌木、草本、苔藓层次分明。共发现高等植物386 种,其中维管植物46 科103 属163 种,苔藓植38 科83 属物223 种。各层片结构及物种组成如下: (1)钙化滩生境、阴坡非钙化生境、半阳坡非钙化生境分别发现乔木18 种、13种、8 种。乔木层均可分为两个亚层,第一亚层优势种均为岷江冷杉,第二亚层主要为岷江冷杉异龄树或其它大高位芽物种。钙化滩生境第一亚层除优势种岷江冷杉外混生有巴山冷杉(Abies fargesii)、粗枝云杉(Picea asperata)以及阔叶树种白桦(Betula platyphylla)等,第二亚层主要为岷江冷杉异龄树;阴坡非钙化生境第一亚层除优势种岷江冷杉外间有巴山冷杉和白桦,第二亚层物种主要为川滇长尾槭(Acer caudatum var. prattii);半阳坡非钙化生境第一亚层除优势种岷江冷杉外混生有巴山冷杉,第二亚层主要为岷江冷杉异龄树。依乔木层优势种的差异,钙化滩生境及半阳坡非钙化生境为岷江冷杉纯林,阴坡非钙化生境为岷江冷杉-川滇长尾槭混交林。不同生境乔木层郁闭度、乔木密度、树高结构、直径结构均存在差异。 (2)钙化滩生境发现灌木41 种,平均盖度为18.49±1.72(%),平均高度为52.12±4.45(cm),优势种为直穗小檗(Berberis dasystachya);阴坡非钙化生境发现灌木30 种,平均盖度为29.33±2.56 (%),平均高度为119.55±8.01 (cm),优势种为箭竹 (Fargesia spathacea) 、唐古特忍冬(Lonicera tangutica) 和袋花忍冬(Lonicera saccata);半阳坡非钙化生境发现灌木29 种,平均盖度为31.35±1.93 (%),平均高度为107.55±4.24 (cm),优势种为箭竹(Fargesia spathacea)。不同生境灌木层结构和物种组成多样性差异显著,钙化滩生境的灌木盖度、高度总体上较非钙化的坡地生境低, 钙化滩生境灌木以小型叶的落叶灌木为主,沟两侧非钙化的坡地生境上则发育了丰富箭竹。 (3)钙化滩生境发现草本46 种,平均盖度为7.18±0.79 (%),平均高度为5.04±0.26(cm),以山酢浆草(Oxalis griffithii)为优势种;阴坡非钙化生境发现草本物种71 种,平均盖度达29.04±2.31(%),平均高度为9.08±0.52(cm),以钝叶楼梯草(Elatostema obtusum)、山酢浆草为优势种;半阳坡非钙化生境草本物种50 种,平均盖度为以8.79±0.82(%),平均高度为7.67±0.43 (cm),以扇叶铁线蕨(Adiantum flabellulatum)、双花堇菜(Viola biflora)、华中蛾眉蕨(Lunathyrium shennongense)、山酢浆草为优势种。阴坡非钙化生境草本层片发育良好,多样性最为丰富,盖度和物种丰富度均显著高于钙化滩生境和半阳坡非钙化生境。 (4)钙化滩生境发现苔藓物种140 种,平均盖度达84.25±1.30 (%),以仰叶星塔藓(Hylocomiastrum umbratum) 等大型藓类为优势种;阴坡非钙化生境发现苔藓物种115 种,平均盖度为79.29±1.64 (%),以刺叶提灯藓(Mnium spinosum)、大羽藓(Thuidium cymbifolium)、毛尖燕尾藓(Bryhnia trichomitra)等个体较小的物种为优势种;半阳坡非钙化生境发现苔藓物种91 种,平均盖度为60.64±1.93 (%),也以刺叶提灯藓为优势种。 (5)钙化滩生境、阴坡非钙化生境、半阳坡非钙化生境的物种数分别为234 种、221 种、175 种。乔木层的Shannon-Wiener 指数分别为0.75 ±0.12、1.87±0.12、1.78±0.07(灌木层,0.44±0.08、1.71± 0.15、2.49±0.06;草本层,0.33±0.13、1.31±0.15 、2.15±0.08; 苔藓层1.30±0.11、2.08±0.04、1.73±0.11,);Pielou 均匀度指数分别为0.45±0.05、0.29±0.06、0.28±0.08(灌木层,0.75±0.03、0.68±0.05、0.52±0.06;草本层,0.68±0.02、0.77±0.02、0.74±0.02;苔藓层,0.40±0.03、0.63±0.02、0.52±0.03);Simpson's 优势度指数分别为0.63±0.06、0.78±0.04、0.83±0.07(灌木层,0.21±0.03、0.28±0.05、0.45±0.06;草本层,0.25±0.02、0.12±0.01、0.17±0.01;苔藓层,0.45±0.04、0.18±0.01、0.31±0.04)。三种生境间乔木层、草本层的Sorenson 群落相似性系数较低, 灌木层、苔藓层的的Sorenson 群落相似性系数较高。 综上所述,黄龙岷江冷杉林的群落结构、植物多样性在三种生境间存在差异性,这将意味着我们在进行黄龙世界自然遗产地的森林经营管理时要较多地关注岷江冷山林群落在不同生境中的差异性。 There were multiplex habitat types, complicated community structure and abundant species composition in the Huanglong World Natural Heritage Site. Uncovering the differences of biodiversity among different habitats was a precondition to understand the distribution, formation and sustaining mechanism of the biodiversity, and the foundation of biodiversity conservation. In the present study, using plenty of quadrants, we investigated the community structure and the biodiversity of the primitive Abies faxoniana forest in different habitats (travertine bottomland, semi-sunny-slope non-calcified habitat and shady-slope non-calcified habitat) in the Huanglong World Natural Heritage Site. The main results are as follows: All the primitive Abies faxoniana forests in the three habitats were uneven-aged with obvious vertical structure including tree layer, shrub layer, herb layer and bryophyte layer. A total of 386 higher plants including 163 vascular plant species (103 generic, 46 families) and 223 bryophyte species (83 generic, 38 families) were investigated. The structure and species composition of each layer are as follows: (1) There were 18, 13 and 8 tree species in travertine bottomland, shady-slope non-calcified habitat and semi-sunny-slope non-calcified habitat, respectively. The tree layers in all habitats can be divided into two clear sub-layers. The upper tree layers were dominated by Abies faxoniana, and the lower tree layers were dominated by uneven-aged Abies faxoniana or other phanerophytes species. There were Abies fargesii , Picea asperata and Betula platyphylla besides the dominated species (Abies faxoniana) in the upper tree layer in travertine bottomland, and the lower tree layers were dominated by uneven-aged Abies faxoniana; There were Abies fargesii and Betula platyphylla besides the dominated species (Abies faxoniana) in the upper tree layer in shady-slope non-calcified habitat, and the lower tree layers were dominated by Acer caudatum var. prattii; There was Abies fargesii besides the dominated species (Abies faxoniana) in the upper tree layer semi-sunny-slope non-calcified habitat, and the lower tree layers were dominated by uneven-aged Abies faxoniana. According to composition percentage of dominate species in tree layer, both the forest in travertine bottomland and in semi-sunny-slope non-calcified habitat could be ranked as pure forest, and the forest in shady-slope non-calcified habitat could be ranked as mingled forest. There were significant differences in crown density, plant density, height structure and diameter structure among the three habitats. (2) A total of 41 shrub species (average coverage 18.49±1.72%; average height 52.12±4.45 ㎝)were found in travertine bottomland, and the dominate species was Berberis dasystachya; A total of 30 shrub species (average coverage 29.33±2.56 %;average height 119.55±8.01 ㎝)were found in shady-slope non-calcified habitat, and the dominate species was Fargesia spathacea, Lonicera tangutica and Lonicera saccata. A total of 29 shrub species (average coverage 31.35±1.93%; average height 107.55±4.24 ㎝) were found in semi-sunny-slope non-calcified habitat, and the dominate species was Fargesia spathacea. There were significant differences in structure and species diversity of the shrub layers among the three habitats. The coverage and height of shrub had lower value in travertine bottomland than in two non-calcified habitats. Moreover, travertine bottomland was dominated by deciduous shrub species with microphyll and non-calcified habitats developed abundant Fargesia spathacea species. (3) A total of 46 herb species (average coverage 7.18±0.79%;average height 5.04±0.26 ㎝)were found in travertine bottomland, and the dominate species was Oxalis griffithii; A total of 71 herb species (average coverage 29.04±2.31%;average height 9.08±0.52 ㎝)were found in shady-slope non-calcified habitat, and the dominate species was Elatostema obtusum and Oxalis griffithii. A total of 50 herb species (average coverage 8.79±0.82%;average height 7.67±0.43 ㎝) were found in semi-sunny-slope non-calcified habitat, and the dominate species was Adiantum flabellulatum, Viola biflora, Lunathyrium shennongense and Oxalis griffithii. Herb layers developed well in shady-slope non-calcified habitat and had the higher species richness and coverage than travertine bottomland and semi-sunny-slope non-calcified habitat. (4) A total of 140 bryophyte species (average coverage 84.25±1.30%)were found in travertine bottomland, and the dominate species was big bryophyte species such as Hylocomiastrum umbratum and so on; A total of 115 bryophyte species (average coverage 79.29±1.64%)were found in shady-slope non-calcified habitat, and the dominate species was small bryophyte species such as Mnium spinosum, Thuidium cymbifolium, Bryhnia trichomitra and so on. A total of 91 bryophyte species (average coverage 60.64±1.93%) were found in semi-sunny-slope non-calcified habitat, and the dominate species was Mnium spinosum. (5) There were 234, 221 and 175 plant species in travertine bottomland, shady-slope non-calcified habitat and semi-sunny-slope non-calcified habitat, respectively. Shannon-Wiener index of the tree layer was 0.75 ±0.12, 1.87±0.12 and 1.78±0.07 (the shrub layer, 0.44±0.08, 1.71± 0.15 and 2.49±0.06; the herb layer, 0.33±0.13, 1.31±0.15 and 2.15±0.08; the bryophyte layer, 1.30±0.11, 2.08±0.04 and 1.73±0.11.) for the three habitats, respectively; Pielou index of the tree layer was 0.45±0.05, 0.29±0.06 and 0.28±0.08 (the shrub layer, 0.75±0.03, 0.68±0.05 and 0.52±0.06; the herb layer, 0.68±0.02, 0.77±0.02 and 0.74±0.02; the bryophyte layer, 0.40±0.03, 0.63±0.02 and 0.52±0.03.) for the three habitats, respectively. Simpson's index of the tree layer was 0.63±0.06, 0.78±0.04 and 0.83±0.07 (the shrub layer, 0.21±0.03、0.28±0.05、0.45±0.06; the herb layer, 0.25±0.02, 0.12±0.01 and 0.17±0.01; the bryophyte layer, 0.45±0.04, 0.18±0.01 and 0.31±0.04.) for the three habitats, respectively. There were low Sorenson index both in the tree layer and in the herb layer among the three habitats, whereas, high Sorenson index occurred both in the shrub layer and in the bryophyte layer. To sum up, there were differences both in community structure and plant diversity among the three different habitats, which means that we should pay more attention to habitats heterogeneities of the primitive Abies faxoniana forest when we take action to manage the forest in the Huanglong World Natural Heritage Site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

角蟾科(Megophryidae)是以角蟾属(Megophrys Kuhl and Van Hasselt, 1822)为模式属而建立的,隶于无尾目(Anura),变凹型亚目(Anomocoela)。角蟾科包括2 亚科11 属142 种,分布于东洋界,从巴基斯坦、中国西部向东直到菲律宾和苏达群岛;中国有9 属75 种分布于华中和华南地区。角蟾科被认为是原始的两栖动物之一,其分类学、系统学、生态学、动物地理学的研究均深受中外科学家的瞩目。近年来,通过形态学、古生物学、细胞学、生态学、支序系统学的研究,角蟾科的分类与系统学研究取得了较大进展。与成体形态和分子系统学研究结果相比较,蝌蚪的研究存在更多的问题和挑战,尚需深入研究:(1)角蟾科蝌蚪的形态多样性分析;(2)角蟾科的系统发育关系与蝌蚪的演化,以及口漏斗的起源;(3)角蟾科蝌蚪表型分化与栖息环境和觅食行为的适应演化。针对上述问题,本文对角蟾科9 属30 种蝌蚪的形态特征,包括外部宏观形态和口器外部结构特征、口器内部显微结构、唇齿和角质颌的亚显微结构作了深入细致、多层次的比较研究;通过12s rRNA 和cytochrome b 基因构建最大简约树,采用贝叶斯系统发育进行分析,蝌蚪型的演化采用祖先性状的重建方法分析;得到如下结论:1)初步将角蟾科蝌蚪分为4 种类型;并且建立了2 种新的角蟾科蝌蚪类型。A 型:拟髭蟾型蝌蚪,该型蝌蚪包括拟髭蟾属、髭蟾属、齿蟾属和齿突蟾属的物种;B 型:新类型,掌突蟾型蝌蚪,该型蝌蚪在本文中包括掌突蟾属、小臂蟾属的物种;C 型:新类型,短腿蟾型蝌蚪,一种特化类型,该型蝌蚪在本文中仅包括短腿蟾属的物种;D 型:角蟾型蝌蚪,该型蝌蚪在本文中包括无耳蟾属、小口拟角蟾属和异角蟾属的物种。2)对角蟾科的分类进行了修订:(1)支持角蟾科两个亚科的分类系统;(2)角蟾亚科包括拟角蟾属、异角蟾属、无耳蟾属和短腿蟾属;该亚科形态差异小,系统学关系比较复杂,暂不作族级分类的再划分;(3)拟髭蟾亚科分为2 个族:拟髭蟾族,该族物种具有类型A 的蝌蚪,包括4 个属:拟髭蟾属、髭蟾属、齿蟾属、齿突蟾属;掌突蟾族,该族物种具有类型B 的蝌蚪,包括2 个属:掌突蟾属和小臂蟾属。3)结合分子系统进化关系探讨了4 种蝌蚪类型的演化。(1)角蟾科蝌蚪的最近共同祖先来自于一类具有拟髭蟾型蝌蚪性状的蝌蚪;(2)掌突蟾型蝌蚪和角蟾亚科的蝌蚪是由具有拟髭蟾型蝌蚪性状的祖先蝌蚪分别演化而来;(3)短腿蟾型蝌蚪是角蟾型蝌蚪的一种特化类型;(4)外群蝌蚪具有与拟髭蟾型蝌蚪相似的性状,进一步印证了类拟髭蟾型蝌蚪是角蟾科蝌蚪的最近共同祖先的假说;(5)具有口漏斗的蝌蚪类型是由不具口漏斗的蝌蚪类型演化而来,在角蟾科中口漏斗是一种衍生性状。4)分析了角蟾科四种蝌蚪类型与栖息环境的适应演化。(1)角蟾科蝌蚪的口部和体形的变化反映了该科蝌蚪由缓流向类似静水生境的回水凼的渐变式适应,角蟾科蝌蚪的形态显示了多方面的适应变化;(2)随着蝌蚪类型由A 向D的演化,当水速较大时,拟髭蟾型的蝌蚪营流水攀吸型生活方式;当水速递减时,掌突蟾型蝌蚪营流水附着型生活方式;当水速进一步递减时,具有较小口漏斗的短腿蟾型蝌蚪和具有大漏斗的角蟾型蝌蚪营流水浮泳型生活。角蟾科蝌蚪对于水流递减的适应演化说明蝌蚪的生态学适应是具有进化意义的;(3)蝌蚪口器内部结构的分化揭示了蝌蚪和食性的适应关系,蝌蚪以口部的唇齿与角质颌刮取或吞吸水中的物质,然后,通过口乳突有选择地过滤进入口腔中食物。拟髭蟾亚科蝌蚪的唇齿多而窄,唇齿间距宽,颌鞘粗而稀,反映了其植食性为主的特点;它们的舌前乳突一般为指状,在口腔入口处所占面积小,其机械过滤的作用很多被唇齿和角质颌分担了;而角蟾亚科的蝌蚪,其角质颌弱,其舌前乳突一般为匙状,几乎填满了口腔入口处,因此舌前乳突起了主要的机械过滤作用。The family Megophryidae is the largest and most diverse families inArchaeobatrachia, and most of its species occur in India, Pakistan, and eastward intoChina, Southeast Asia, Borneo and the Philippines to the Sunda Islands. Currently thefamily includes 142 species have been grouped into two subfamilies, Megophryinaeand Leptobrachiinae. The mountains of central and southern China are rich in speciesof Megophryidae, 75 species belong to 9 genera and two subfamilies.The family was supposed to be ideal materials of studies in many fields of biology,such as taxonomy, evolution, systematics, ecology, and biogeography. Recently, therehave a great development in taxonomy and systematics of megophryids throughstudied by morphology, paleontology, cytology, ecology, and cladistics. However,larvae of megophryids were generally unknown, although the tadpoles might be veryimportant for above studies.In this paper, we examined the evolutionary scenario of the tadpoles’ morphologyin the context of a phylogenetic framework. Our objectives are (1) to evaluate thedivergence of larval body shape and oral discs in the family Megophryidae, (2) toexplore the evolutionary trends of the larvae in megophryidae, and test if thefunnel-shaped oral disc is apomorphic, and (3) to explore the relationship of the larvalstructure, diet and microhabitat.We examined larval morphology of 30 megophryid species, the larval body shape,oral discs, the buccopharyngeal cavity, and jaw sheaths and denticles of the Chinesemegophryid frogs were re-examined. We constructed a phylogeny of the species on thebasis of published mitochondrial cytochrome b and 16S rRNA gene segments usingpartitioned Bayesian analyses. Furthermore, hypothetical changes of larval morphologywere inferred using parsimony principle on the phylogeny. The results showed that:1) Four tadpole types in Megophryidae. The larval morphological charactersseries in Chinese megophryids fall into four general categories according to the bodyshape and oral discs: (A) Leptobrachiini type, species from genera Leptobrachium,Oreolalax, Scutiger and, Vibrissaphora share this type of tadpoles. (B) Leptolalax type,species of genus Leptolalax have this type of tadpoles. (C) Brachytarsophrys type,species of the genus Brachytarsophrys have this type of tadpoles. (D) Megophryinitype, species of the genera Atympanophrys, Ophryophryne, and Xenophrys share this type of tadpoles. Of which B and C are two novel types.2)Taxonomic implications. The present study leads us to reconsider the generalclassification of tribes attributed to members of Megophryidae. More specifically,concerning the phylogenetic relationships and the two novel tadpole types describedherein, we propose a provisional taxonomy for the family but suggest that further taxasampling of other megophryids be performed to confirm this taxonomic change. TheMegophryidae is composed of two subfamilies (Leptobrachiinae and Megophryinae).The Leptobrachiinae was recogonized the two tribes: (1) tribe Leptobrachiini sensuDubois, corresponding to the tadpole of type A, including four genera, i.e.,Leptobrachium, Oreolalax, Scutiger and, Vibrissaphora; (2) tribe Leptolalaxini,corresponding to the tadpole of novel type B, including two genera, i.e., Leptolalaxand Leptobrachella. However, the relationships among the genera of Megophryinaewere largely unresolved, they recognized no monophyletic groups above the generalevel. A more thorough sampling will likely foster a better taxonomic solution.3) The larval evolutionary scenario in Megophryidae.Type A is characteristicof normal-mouthed with multiple tooth rows, representing the tadpole type of theMRCA of Chinese megophryids. Type B is characteristic of normal-mouthed withreduced tooth rows, prolonging labium, and integumetary glands. Type C ischaracteristic of no labial teeth and smaller umbeliform oral disc. Type D ischaracteristic of no labial teeth, enlarged umbeliform oral disc, representing the tadpoleof the MRCA of subfamily Megophryinae. A previous hypothesis, referring tofunnel-shaped oral discs as an apomorphy, is supported.4) The larval adaptation to habitats in Megophryidae. Tadpoles generallyadhere to substrates using their mouths, and the microhabitat that the tadpoles occupyreflects the degree of adhesion and oral complexity. The morphological changes inmegophryid tadpoles virtually allow a progressive adaptation to a changing habitatfrom faster water to slower water. Within the tadpoles of Type A to type D, the TOTbecomes smaller and smaller, and the oral disc orientates from anteroventral toumbelliform upturned, and eye position orientates from dorsal to lateral, and the trunkis more and more depressed and tail becomes relatively longer and slender. Within therunning water, the normal-mouthed with multiple tooth rows of Leptobrachiini tadpoles are correlated with lotic-suctorial, benthic feeders with anteroventral oraldisc and the largest body. With the water’s velocity decreasing, the lotic-adherentfeeders of Leptolalax tadpoles have tube-shaped labium with reduced tooth rows andintegumetary glands. And then, the smaller umbeliform in Brachytarsophrys tadpolesand the enlarged umbeliform oral disc in the Megophryini tadpoles are inhabitmicrohabitats of non-flowing backwaters of rivers, indicative of adaptive traits oflotic-neustonic surface feeders. The scheme of megophryid tadpoles andmicrohabitats provided the first clear evidence which congruent with the hypothesis ofAltig and Johnston (1989). The ecological divergence plays a general role in thedivergence and evolution of megophrid larvae. There is a definite correlation amongthe buccopharyngeal cavity, diet and feeding mechanisms, the tadpole graze orswallow the food particles, then through papillae which like a sieve and sort out foodparticles to the oesophagus. The tadpole of Leptobrachiinae possess multiple toothrows, wide intertooth distance as well as thick and sparse jaw sheath, these tadpolesinhabit bottom of the streams and graze on epiphyton or major detritus of organicmatter on the substrates, their prelingual papillae like single finger, the mechanicalpurpose of papillae served share in by tooth and jaw. The tadpoles of Megophryinaeoccur near the water surface of small streams and are the filter feeder, their dietincludes plankton and organic debris floating on the water surface, those tadpolepossess weak jaw, their prelingual papillae like spoon, the mechanical purpose ofpapillae served mostly for sieve.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

采用孢粉分析和 1 4 C测年法 ,通过花粉植被化模拟技术 ,研究了延安地区全新世的孢粉组合特征及其古植被的演替历史。全新世时期延安地区的气候变化在全球和中国区域气候的格局下 ,也呈现出早、中、晚三个气候阶段 ,中期 (75 0 0~ 45 0 0 a)为气候最佳期 ,与之相对应的植被演替也分为三个阶段 :中期植被为松、桦、栎、漆为主具亚热带成分的暖温带落叶阔叶林 ,早期和晚期的气候较干冷 ,乔木花粉的含量减少 ,呈现以松、栎为主的暖温带针阔叶混交林

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biological soil crusts (BSCs) in the Gurbantunggut Desert, the largest fixed and semi-fixed desert in China, feature moss-dominated BSCs, which play an indispensable role in sand fixation. Syntrichia caninervis Mitt. (S. caninervis) serves as one of the most common species in BSCs in the desert. In this study we examined the morphological structure of S. caninervis from leafy gametophyte to protonema using light and scanning electron microscopy (SEM). We also examined the relationships between the morphological structure of S. caninervis and environmental factors. We found that: (1) this moss species is commonly tufted on the sand surface, and its leaves are folded upwards and twisted around the stem under dry conditions; (2) the cells on both upper and lower leaf surfaces have C-shaped dark papillae, which may reflect sunlight to reduce the damage from high temperature; (3) the leaf costa is excurrent, forming an awn with forked teeth; and (4) the protonema cells are small and thickset with thick cell walls and the cytoplasm is highly concentrated with a small vacuole. In addition, we also found that the protonema cells always form pouches on the tip of the mother cells during the process of cell polarization. Our results suggest that S. caninervis has, through its life cycle, several morphological and structural characteristics to adapt to dry environmental conditions. These morphological features of S. caninervis may also be found in other deserts in the world due to the world-wide distribution of the species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A pollen record of core PC-1 from the northern Okinawa Trough, East China Sea (ECS), provides information on vegetation and climate changes since 24 cal. kaBP. A total of 103 samples were palynologically analyzed at 8 cm intervals with a time resolution of 230 a. Four pollen zones are recognized: zone I (812-715 cm, 24.2-21.1 cal. kaBP), zone II (715-451 cm, 21.1-15.2 cal. kaBP), zone III (451-251 cm, 15.2-10.8 cal. kaBP), zone IV (251-0 cm, 10.8-0.3 cal. kaBP), corresponding to Late MIS 3, Last Glacial Maximum (LGM), deglaciation and Holocene, respectively. The LGM is characterized by the dominance of herbs, mainly Artemisia, and high pollen influx, implying an open vegetation on the exposed continental shelf and a cool and dry climate. The deglaciation is a climate warming stage with Pinus percentage increased and Artemisia percentage decreased and a rapid sea-level rise. The Holocene is characterized by predominance of tree pollen with rapid increase in Castanea-Castanopsis indicating the development of mixed evergreen and deciduous broad-leaved forest and a warm, humid climate. Low pollen influx during the Holocene probably implies submergence of the continental shelf and retreat of the pollen source area. The vegetation indicated by pollen assemblage found in this upper zone is consistent with the present vegetation found in Kyushu, Japan. Originating from the humid mountain area of North Luzon of the Philippines, Tasmania and New Zealand, Phyllocladus with sporadic occurrence throughout PC-1 core probably suggests the influence of Palaeo-Kuroshio Current or intense summer monsoon. The observed changes in Pinus and Herbs percentage indicate fluctuations of the sea level, and high Pinus percentage corresponds to high sea level. Spectrum analysis of the pollen percentage record reveals many millennial-scale periodicities, such as periodicities of 6.8, 3.85 2.2, 1.6 ka.