934 resultados para Data anonymization and sanitization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poster at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Workshop at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poster at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poster at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poster at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this project was to introduce a new software product to pulp industry, a new market for case company. An optimization based scheduling tool has been developed to allow pulp operations to better control their production processes and improve both production efficiency and stability. Both the work here and earlier research indicates that there is a potential for savings around 1-5%. All the supporting data is available today coming from distributed control systems, data historians and other existing sources. The pulp mill model together with the scheduler, allows what-if analyses of the impacts and timely feasibility of various external actions such as planned maintenance of any particular mill operation. The visibility gained from the model proves also to be a real benefit. The aim is to satisfy demand and gain extra profit, while achieving the required customer service level. Research effort has been put both in understanding the minimum features needed to satisfy the scheduling requirements in the industry and the overall existence of the market. A qualitative study was constructed to both identify competitive situation and the requirements vs. gaps on the market. It becomes clear that there is no such system on the marketplace today and also that there is room to improve target market overall process efficiency through such planning tool. This thesis also provides better overall understanding of the different processes in this particular industry for the case company.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cross-sector collaboration and partnerships have become an emerging and desired strategy in addressing huge social and environmental challenges. Despite its popularity, cross-sector collaboration management has proven to be very challenging. Even though cross-sector collaboration and partnership management have been widely studied and discussed in recent years, their effectiveness as well as their ability to create value with respect to the problems they address has remained very challenging. There is little or no evidence of their ability to create value. Regarding all these challenges, this study aims to explore how to manage cross-sector collaborations and partnerships to be able to improve their effectiveness and to create more value for all partners involved in collaboration as well as for customers. The thesis is divided into two parts. The first part comprises an overview of relevant literature (including strategic management, value networks and value creation theories), followed by presenting the results of the whole thesis and the contribution made by the study. The second part consists of six research publications, including both quantitative and qualitative studies. The chosen research strategy is triangulation, as the study includes four types of triangulation: (1) theoretical triangulation, (2) methodological triangulation, (3) data triangulation and (4) researcher triangulation. Two publications represent conceptual development, which are based on secondary data research. One publication is a quantitative study, carried out through a survey. The other three publications represent qualitative studies, based on case studies, where data was collected through interviews and workshops, with participation of managers from all three sectors: public, private and the third (nonprofit). The study consolidates the field of “strategic management of value networks,” which is proposed to be applied in the context of cross-sector collaboration and partnerships, with the aim of increasing their effectiveness and the process of value creation. Furthermore, the study proposes a first definition for the strategic management of value networks. The study also proposes and develops two strategy tools that are recommended to be used for the strategic management of value networks in cross-sector collaboration and partnerships. Taking a step forward, the study implements the strategy tools in practice, aiming to show and to demonstrate how new value can be created by using the developed strategy tools for the strategic management of value networks. This study makes four main contributions. (1) First, it brings a theoretical contribution by providing new insights and consolidating the field of strategic management of value networks, also proposing a first definition for the strategic management of value networks. (2) Second, the study makes a methodical contribution by proposing and developing two strategy tools for value networks of cross-sector collaboration: (a) value network mapping, a method that allows us to assess the current and the potential value network and (b) the Value Network Scorecard, a method of performance measurement and performance prediction in cross-sector collaboration. (3) Third, the study has managerial implications, offering new solutions and empirical evidence on how to increase the effectiveness of cross-sector collaboration and also allow managers to understand how new value can be created in cross-sector partnerships and how to get the full potential of collaboration. (4) And fourth, the study also has practical implications, allowing managers to understand how to use in practice the strategy tools developed in this study, providing discussions on the limitations regarding the proposed tools as well as general limitations involved in the study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acid sulfate (a.s.) soils constitute a major environmental issue. Severe ecological damage results from the considerable amounts of acidity and metals leached by these soils in the recipient watercourses. As even small hot spots may affect large areas of coastal waters, mapping represents a fundamental step in the management and mitigation of a.s. soil environmental risks (i.e. to target strategic areas). Traditional mapping in the field is time-consuming and therefore expensive. Additional more cost-effective techniques have, thus, to be developed in order to narrow down and define in detail the areas of interest. The primary aim of this thesis was to assess different spatial modeling techniques for a.s. soil mapping, and the characterization of soil properties relevant for a.s. soil environmental risk management, using all available data: soil and water samples, as well as datalayers (e.g. geological and geophysical). Different spatial modeling techniques were applied at catchment or regional scale. Two artificial neural networks were assessed on the Sirppujoki River catchment (c. 440 km2) located in southwestern Finland, while fuzzy logic was assessed on several areas along the Finnish coast. Quaternary geology, aerogeophysics and slope data (derived from a digital elevation model) were utilized as evidential datalayers. The methods also required the use of point datasets (i.e. soil profiles corresponding to known a.s. or non-a.s. soil occurrences) for training and/or validation within the modeling processes. Applying these methods, various maps were generated: probability maps for a.s. soil occurrence, as well as predictive maps for different soil properties (sulfur content, organic matter content and critical sulfide depth). The two assessed artificial neural networks (ANNs) demonstrated good classification abilities for a.s. soil probability mapping at catchment scale. Slightly better results were achieved using a Radial Basis Function (RBF) -based ANN than a Radial Basis Functional Link Net (RBFLN) method, narrowing down more accurately the most probable areas for a.s. soil occurrence and defining more properly the least probable areas. The RBF-based ANN also demonstrated promising results for the characterization of different soil properties in the most probable a.s. soil areas at catchment scale. Since a.s. soil areas constitute highly productive lands for agricultural purpose, the combination of a probability map with more specific soil property predictive maps offers a valuable toolset to more precisely target strategic areas for subsequent environmental risk management. Notably, the use of laser scanning (i.e. Light Detection And Ranging, LiDAR) data enabled a more precise definition of a.s. soil probability areas, as well as the soil property modeling classes for sulfur content and the critical sulfide depth. Given suitable training/validation points, ANNs can be trained to yield a more precise modeling of the occurrence of a.s. soils and their properties. By contrast, fuzzy logic represents a simple, fast and objective alternative to carry out preliminary surveys, at catchment or regional scale, in areas offering a limited amount of data. This method enables delimiting and prioritizing the most probable areas for a.s soil occurrence, which can be particularly useful in the field. Being easily transferable from area to area, fuzzy logic modeling can be carried out at regional scale. Mapping at this scale would be extremely time-consuming through manual assessment. The use of spatial modeling techniques enables the creation of valid and comparable maps, which represents an important development within the a.s. soil mapping process. The a.s. soil mapping was also assessed using water chemistry data for 24 different catchments along the Finnish coast (in all, covering c. 21,300 km2) which were mapped with different methods (i.e. conventional mapping, fuzzy logic and an artificial neural network). Two a.s. soil related indicators measured in the river water (sulfate content and sulfate/chloride ratio) were compared to the extent of the most probable areas for a.s. soils in the surveyed catchments. High sulfate contents and sulfate/chloride ratios measured in most of the rivers demonstrated the presence of a.s. soils in the corresponding catchments. The calculated extent of the most probable a.s. soil areas is supported by independent data on water chemistry, suggesting that the a.s. soil probability maps created with different methods are reliable and comparable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human activity recognition in everyday environments is a critical, but challenging task in Ambient Intelligence applications to achieve proper Ambient Assisted Living, and key challenges still remain to be dealt with to realize robust methods. One of the major limitations of the Ambient Intelligence systems today is the lack of semantic models of those activities on the environment, so that the system can recognize the speci c activity being performed by the user(s) and act accordingly. In this context, this thesis addresses the general problem of knowledge representation in Smart Spaces. The main objective is to develop knowledge-based models, equipped with semantics to learn, infer and monitor human behaviours in Smart Spaces. Moreover, it is easy to recognize that some aspects of this problem have a high degree of uncertainty, and therefore, the developed models must be equipped with mechanisms to manage this type of information. A fuzzy ontology and a semantic hybrid system are presented to allow modelling and recognition of a set of complex real-life scenarios where vagueness and uncertainty are inherent to the human nature of the users that perform it. The handling of uncertain, incomplete and vague data (i.e., missing sensor readings and activity execution variations, since human behaviour is non-deterministic) is approached for the rst time through a fuzzy ontology validated on real-time settings within a hybrid data-driven and knowledgebased architecture. The semantics of activities, sub-activities and real-time object interaction are taken into consideration. The proposed framework consists of two main modules: the low-level sub-activity recognizer and the high-level activity recognizer. The rst module detects sub-activities (i.e., actions or basic activities) that take input data directly from a depth sensor (Kinect). The main contribution of this thesis tackles the second component of the hybrid system, which lays on top of the previous one, in a superior level of abstraction, and acquires the input data from the rst module's output, and executes ontological inference to provide users, activities and their in uence in the environment, with semantics. This component is thus knowledge-based, and a fuzzy ontology was designed to model the high-level activities. Since activity recognition requires context-awareness and the ability to discriminate among activities in di erent environments, the semantic framework allows for modelling common-sense knowledge in the form of a rule-based system that supports expressions close to natural language in the form of fuzzy linguistic labels. The framework advantages have been evaluated with a challenging and new public dataset, CAD-120, achieving an accuracy of 90.1% and 91.1% respectively for low and high-level activities. This entails an improvement over both, entirely data-driven approaches, and merely ontology-based approaches. As an added value, for the system to be su ciently simple and exible to be managed by non-expert users, and thus, facilitate the transfer of research to industry, a development framework composed by a programming toolbox, a hybrid crisp and fuzzy architecture, and graphical models to represent and con gure human behaviour in Smart Spaces, were developed in order to provide the framework with more usability in the nal application. As a result, human behaviour recognition can help assisting people with special needs such as in healthcare, independent elderly living, in remote rehabilitation monitoring, industrial process guideline control, and many other cases. This thesis shows use cases in these areas.