934 resultados para Dantzig–Wolfe decomposition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The national shortage of helium-3 has made it critical to develop an alternative to helium-3 neutron detectors. Boron-10, if it could be produced in macroscopic alpha-rhombohedral crystalline form, would be a viable alternative to helium-3. This work has determined the critical parameters needed for the preparation of alpha-rhombohedral boron by the pyrolytic decomposition of boron tribromide on tantalum wire. The primary parameters that must be met are wire temperature and feedstock purity. The minimum purity level for boron tribromide was determined to be 99.999% and it has been found that alpha-rhombohedral boron cannot be produced using 99.99% boron tribromide. The decomposition temperature was experimentally tested between 830°C and 1000°C. Alpha-rhombohedral boron was found at temperatures between 950°C and 1000°C using 99.999% pure boron tribromide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A scenario-based two-stage stochastic programming model for gas production network planning under uncertainty is usually a large-scale nonconvex mixed-integer nonlinear programme (MINLP), which can be efficiently solved to global optimality with nonconvex generalized Benders decomposition (NGBD). This paper is concerned with the parallelization of NGBD to exploit multiple available computing resources. Three parallelization strategies are proposed, namely, naive scenario parallelization, adaptive scenario parallelization, and adaptive scenario and bounding parallelization. Case study of two industrial natural gas production network planning problems shows that, while the NGBD without parallelization is already faster than a state-of-the-art global optimization solver by an order of magnitude, the parallelization can improve the efficiency by several times on computers with multicore processors. The adaptive scenario and bounding parallelization achieves the best overall performance among the three proposed parallelization strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Upgrade of hydrogen to valuable fuel is a central topic in modern research due to its high availability and low price. For the difficulties in hydrogen storage, different pathways are still under investigation. A promising way is in the liquid-phase chemical hydrogen storage materials, because they can lead to greener transformation processes with the on line development of hydrogen for fuel cells. The aim of my work was the optimization of catalysts for the decomposition of formic acid made by sol immobilisation method (a typical colloidal method). Formic acid was selected because of the following features: it is a versatile renewable reagent for green synthesis studies. The first aim of my research was the synthesis and optimisation of Pd nanoparticles by sol-immobilisation to achieve better catalytic performances and investigate the effect of particle size, oxidation state, role of stabiliser and nature of the support. Palladium was chosen because it is a well-known active metal for the catalytic decomposition of formic acid. Noble metal nanoparticles of palladium were immobilized on carbon charcoal and on titania. In the second part the catalytic performance of the “homemade” catalyst Pd/C to a commercial Pd/C and the effect of different monometallic and bimetallic systems (AuxPdy) in the catalytic formic acid decomposition was investigated. The training period for the production of this work was carried out at the University of Cardiff (Group of Dr. N. Dimitratos).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Co-Al-Ox mixed metal oxides partially modified with Cu or Mg, as well as Ag were successfully prepared, characterized and evaluated as potential catalysts for the N2O decomposition. The materials were characterized by the following techniques: X-Ray Diffraction, Thermogravimetric Analysis (TGA), N2 Physisorption, Hydrogen Temperature-Programmed Reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS). Ag-modified HT-derived mixed oxides showed enhanced activity compared to the undoped materials, the optimum composition was found for (1 wt.% Ag)CHT-Co3Al. The catalyst characterization studies suggested that the improved catalytic activity of Ag-promoted catalysts were mainly because of the altered redox properties of the materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract not available