963 resultados para DIVERGENCE
Resumo:
A PhD Dissertation, presented as part of the requirements for the Degree of Doctor of Philosophy from the NOVA - School of Business and Economics
Resumo:
This paper examine the purpose of rehabilitation while main purpose of imprisonment application, and the divergence between its central role assumed in legislation and what is being practiced in the institutional dimension. This study aims to determine the expected outcome of this dialectical opposition, in pursuit of preventive purposes that guide the criminal reactions of Portuguese criminal - legal system. To this end, the sentence of imprisonment shall be framed in the main politico- criminal traits of our country, analyzing the standards and principles that underlie and underpin our legal – criminal system. The guiding principles of the prison sentence and the respective legislation will be presented, such as the prison system and treatment provided to achieve the above desideratum. Finally material factors and legislative contradictions that oppose the rehabilitation in prisons will be presented. The dissertation does not intend to expose the solution to this paradox insurmountable, but rather present the main factors that hinder the achievement of the objectives intended to be achieved with the prison sentence.
Resumo:
Despite the common assumption that orthologs usually share the same function, there have been various reports of divergence between orthologs, even among species as close as mammals. The comparison of mouse and human is of special interest, because mouse is often used as a model organism to understand human biology. We review the literature on evidence for divergence between human and mouse orthologous genes, and discuss it in the context of biomedical research.
Resumo:
The origin of species diversity has challenged biologists for over two centuries. Allopatric speciation, the divergence of species resulting from geographical isolation, is well documented. However, sympatric speciation, divergence without geographical isolation, is highly controversial. Claims of sympatric speciation must demonstrate species sympatry, sister relationships, reproductive isolation, and that an earlier allopatric phase is highly unlikely. Here we provide clear support for sympatric speciation in a case study of two species of palm (Arecaceae) on an oceanic island. A large dated phylogenetic tree shows that the two species of Howea, endemic to the remote Lord Howe Island, are sister taxa and diverged from each other well after the island was formed 6.9 million years ago. During fieldwork, we found a substantial disjunction in flowering time that is correlated with soil preference. In addition, a genome scan indicates that few genetic loci are more divergent between the two species than expected under neutrality, a finding consistent with models of sympatric speciation involving disruptive/divergent selection. This case study of sympatric speciation in plants provides an opportunity for refining theoretical models on the origin of species, and new impetus for exploring putative plant and animal examples on oceanic islands.
Resumo:
C4 photosynthesis is an adaptation derived from the more common C3 photosynthetic pathway that confers a higher productivity under warm temperature and low atmospheric CO2 concentration [1, 2]. C4 evolution has been seen as a consequence of past atmospheric CO2 decline, such as the abrupt CO2 fall 32-25 million years ago (Mya) [3-6]. This relationship has never been tested rigorously, mainly because of a lack of accurate estimates of divergence times for the different C4 lineages [3]. In this study, we inferred a large phylogenetic tree for the grass family and estimated, through Bayesian molecular dating, the ages of the 17 to 18 independent grass C4 lineages. The first transition from C3 to C4 photosynthesis occurred in the Chloridoideae subfamily, 32.0-25.0 Mya. The link between CO2 decrease and transition to C4 photosynthesis was tested by a novel maximum likelihood approach. We showed that the model incorporating the atmospheric CO2 levels was significantly better than the null model, supporting the importance of CO2 decline on C4 photosynthesis evolvability. This finding is relevant for understanding the origin of C4 photosynthesis in grasses, which is one of the most successful ecological and evolutionary innovations in plant history.
Resumo:
Pygmy Shrews in North America have variously been considered to be one species (Sorex hoyi) or two species (S. hoyi and S. thompsoni). Currently, only S. hoyi is recognized. In this study, we examine mitochondrial DNA sequence data for the cytochrome b gene to evaluate the level of differentiation and phylogeographic relationships among eleven samples of Pygmy Shrews from across Canada. Pygmy Shrews from eastern Canada (i.e., Ontario, Quebec, New Brunswick, Nova Scotia, and Prince Edward Island) are distinct from Pygmy Shrews from western Canada (Alberta, Yukon) and Alaska. The average level of sequence divergence between these clades (3.3%) falls within the range of values for other recognized pairs of sister species of shrews. A molecular clock based on third position transversion substitutions suggests that these two lineages diverged between 0.44 and 1.67 million years ago. These molecular phylogenetic data. combined with a reinterpretation of previously published morphological data, are suggestive of separate species status for S. hoyi and S. thompsoni as has been previously argued by others. Further analysis of specimens from geographically intermediate areas (e.g., Manitoba. northern Ontario) is required to determine if there is secondary contact and/or introgression between these two putative species.
Resumo:
It has been long recognized that highly polymorphic genetic markers can lead to underestimation of divergence between populations when migration is low. Microsatellite loci, which are characterized by extremely high mutation rates, are particularly likely to be affected. Here, we report genetic differentiation estimates in a contact zone between two chromosome races of the common shrew (Sorex araneus), based on 10 autosomal microsatellites, a newly developed Y-chromosome microsatellite, and mitochondrial DNA. These results are compared to previous data on proteins and karyotypes. Estimates of genetic differentiation based on F- and R-statistics are much lower for autosomal microsatellites than for all other genetic markers. We show by simulations that this discrepancy stems mainly from the high mutation rate of microsatellite markers for F-statistics and from deviations from a single-step mutation model for R-statistics. The sex-linked genetic markers show that all gene exchange between races is mediated by females. The absence of male-mediated gene flow most likely results from male hybrid sterility.
Resumo:
Predicting progeny performance from parental genetic divergence can potentially enhance the efficiency of supportive breeding programmes and facilitate risk assessment. Yet, experimental testing of the effects of breeding distance on offspring performance remains rare, especially in wild populations of vertebrates. Recent studies have demonstrated that embryos of salmonid fish are sensitive indicators of additive genetic variance for viability traits. We therefore used gametes of wild brown trout (Salmo trutta) from five genetically distinct populations of a river catchment in Switzerland, and used a full factorial design to produce over 2,000 embryos in 100 different crosses with varying genetic distances (FST range 0.005-0.035). Customized egg capsules allowed recording the survival of individual embryos until hatching under natural field conditions. Our breeding design enabled us to evaluate the role of the environment, of genetic and nongenetic parental contributions, and of interactions between these factors, on embryo viability. We found that embryo survival was strongly affected by maternal environmental (i.e. non-genetic) effects and by the microenvironment, i.e. by the location within the gravel. However, embryo survival was not predicted by population divergence, parental allelic dissimilarity, or heterozygosity, neither in the field nor under laboratory conditions. Our findings suggest that the genetic effects of inter-population hybridization within a genetically differentiated meta-population can be minor in comparison to environmental effects.
Resumo:
Biological scaling analyses employing the widely used bivariate allometric model are beset by at least four interacting problems: (1) choice of an appropriate best-fit line with due attention to the influence of outliers; (2) objective recognition of divergent subsets in the data (allometric grades); (3) potential restrictions on statistical independence resulting from phylogenetic inertia; and (4) the need for extreme caution in inferring causation from correlation. A new non-parametric line-fitting technique has been developed that eliminates requirements for normality of distribution, greatly reduces the influence of outliers and permits objective recognition of grade shifts in substantial datasets. This technique is applied in scaling analyses of mammalian gestation periods and of neonatal body mass in primates. These analyses feed into a re-examination, conducted with partial correlation analysis, of the maternal energy hypothesis relating to mammalian brain evolution, which suggests links between body size and brain size in neonates and adults, gestation period and basal metabolic rate. Much has been made of the potential problem of phylogenetic inertia as a confounding factor in scaling analyses. However, this problem may be less severe than suspected earlier because nested analyses of variance conducted on residual variation (rather than on raw values) reveals that there is considerable variance at low taxonomic levels. In fact, limited divergence in body size between closely related species is one of the prime examples of phylogenetic inertia. One common approach to eliminating perceived problems of phylogenetic inertia in allometric analyses has been calculation of 'independent contrast values'. It is demonstrated that the reasoning behind this approach is flawed in several ways. Calculation of contrast values for closely related species of similar body size is, in fact, highly questionable, particularly when there are major deviations from the best-fit line for the scaling relationship under scrutiny.
Resumo:
Several papers document idiosyncratic volatility is time-varying and many attempts have been made to reveal whether idiosyncratic risk is priced. This research studies behavior of idiosyncratic volatility around information release dates and also its relation with return after public announcement. The results indicate that when a company discloses specific information to the market, firm’s specific volatility level shifts and short-horizon event-induced volatility vary significantly however, the category to which the announcement belongs is not important in magnitude of change. This event-induced volatility is not small in size and should not be downplayed in event studies. Moreover, this study shows stocks with higher contemporaneous realized idiosyncratic volatility earn lower return after public announcement consistent with “divergence of opinion hypothesis”. While no significant relation is found between EGARCH estimated idiosyncratic volatility and return and also between one-month lagged idiosyncratic volatility and return presumably due to significant jump around public announcement both may provide some signals regarding future idiosyncratic volatility through their correlations with contemporaneous realized idiosyncratic volatility. Finally, the study show that positive relation between return and idiosyncratic volatility based on under-diversification is inadequate to explain all different scenarios and this negative relation after public announcement may provide a useful trading rule.
Resumo:
In light of the fact that literature on toxicity of heavy metals in non-acidified
freshwater systems is sparse, this project was initiated to conduct an environmental
assessment of Lake Gibson. Chemistry of soils from adjacent areas and vineyards in the
region provide a comparative background database. Water quality determinations were used
to identify and highlight areas of environmental concern within the Lake Gibson watershed.
A Shelby Corer was used to obtain 66 sediment cores from Lake Gibson. These were
sectioned according to lithology and color to yield 298 samples. A suite of 122 soil samples
was collected in the region and vicinity of Lake Gibson. All were tested for metals and
some for Total Petroleum Hydrocarbons (TPH). Evaluation of the results leads to the
following conclusions:
1. Metal concentrations ofAI, Cd, Cu, Cr, Pb, Ni, Fe and Zn in soils from the Niagara
Region are well below background limits set by the Ministry of the Environment
and Energy (MOEE) for provincial soils.
2. There is a spatial and depth difference for some of the metals within the various
soils. The Cr, Ni and Pb contents of soils vary throughout the region (p
Resumo:
Blood serum and egg-white protein samples from individuals representing seven colonies of Larusargentatus, and four colonies of Sterna hirundo were electrophoretically analysed to determine levels of genetic variability and to assess the utility of polymorphic loci as genetic markers. Variability occurred at five co-dominant autosomal loci. S. hirundo protein polymorphism occurred at the Est-5 and the Oest-l loci, while nineteen loci were monomorphic. L. argentatus samples were monomorphic at seventeen loci and polymorphic at the Ldh-A and the Alb loci. Intergeneric differences existed at the Oalb and the Ldh-A loci. Although LDH-A100 from both species possessed identical electrophoretLc mobilities, the intergeneric differences were expressed as a difference in enzyme the'ITIlostabilities. Geographical distribution of alleles and genetic divergence estimates suggest ~ hirundo population panmixis,at least at the sampled locations. The h argentatus gene pool appears relatively heterogeneous with a discreet Atlantic Coast population and a Great Lakes demic population. These observed population structures may be maintained by the relative amount of gene flow occurring within and among populations. Mass ringing data coupled to reproductive success information and analysis of dispersal trends appear to validate this assumption. Similar results may be generated by either selection or both small organism and low locus sample sizes. To clarify these results and to detect the major factor(s) affecting the surveyed portions of the genome, larger sample sizes in conjunction with precise eco-demographic data are required.
Resumo:
Forty-four bacteriophage isolates of Erwinia amy/ovora, the causal agent of fire blight, were collected from sites in and around the Niagara Region of Southern Ontario in the summer of 1998. Phages were isolated only from sites where fire blight was present. Thirty-seven of these phages were isolated from the soil surrounding infected trees, with the remainder isolated from aerial plant tissue samples. A mixture of six E. amy/ovora bacterial host strains was used to enrich field samples in order to avoid the selection bias of a single-host system. Molecular characterization of the phages with a combination of peR and restriction endonuclease digestions showed that six distinct phage types were isolated. Ten phage isolates related to the previously characterized E. amy/ovora phage PEa1 were isolated, with some divergence of molecular markers between phages isolated from different sites. The host ranges of the phages revealed that certain types were unable to efficiently lyse some E. amy/ovora strains, and that some types were able to lyse the epiphytic bacterium Pantoea agg/omerans. Biological control of E. amy/ovora by the bacteriophages was assessed in a bioassay using discs of immature pear fruit. Twenty-three phage isolates were able to significantly suppress the incidence of bacterial exudate on the pear disc surface. Quantification of the bacterial population remaining on the disc surface indicated that population reductions of up to 97% were obtainable by phage treatment, but that elimination of bacteria from the surface was not possible with this model system.
Resumo:
Many species of Anopheles mosquitoes (Diptera: Culicidae) are now recognized as species complexes whose members are often indistinguishable morphologically but identifiable based on ecological, genetic, or behavioural data. Because the members of species complexes often differ in their vector potential, accurate identification of vector species is essential for successful mosquito control. To investigate the cryptic species status of Anopheles mosquitoes in Canada, specimens were collected from across the country and examined using morphological, molecular, and ecological data. Six of the seven traditionally recognised species from Canada were collected from locations in British Columbia, Quebec, Newfoundland and Labrador, and throughout Ontario, including Anopheles barberi, An. earlei, An. freeborni, An. punctipennis, An. quadrimaculatus s.l., and An. walkeri. Variation in polymorphic traits within An. earlei, An. punctipennis, and An. quadrimaculatus s.l. were quantified and egg morphology examined using scanning electron microscopy. Morphological identification of adult and larval specimens suggested that two described cryptic species, An. perplexens and An. smaragdinus, were present in Canada. DNA sequence data were analysed for evidence of cryptic species using three molecular markers: COl, ITS2, and ITS!. Intraspecific COl variation was very low in most species «1 %), except for An. punctipennis with 2% sequence divergence between those from British Columbia (BC) and Ontario (ON), and An. walkeri with 7% sequence divergence between populations from Manitoulin Island (NO) and Long Point Provincial Park (LP). Similar patterns were also seen using ITS2 and ITS 1. Therefore, molecular data revealed the presence of two putative cryptic species within two species examined (i.e., An. walkeri and An. punctipennis), corresponding to collection location (i.e., NO vs. LP and BC vs. ON, respectively). Surprisingly, there was no molecular support for the presence of either An. perplexens or An. smaragdinus in Canada despite the morphological assessments. Ecological data from all collection sites were recorded and are available in an online database designed to manage all collection and identification data. Current bionomic information, including regional abundance, larval habitat, and species associations, was determined for each species. This multidisciplinary study of Anopheles mosquitoes is the first detailed investigation of these potential disease vectors in Canada and demonstrates the importance of an integrated approach to anopheline systematics that includes molecular data.
Resumo:
Metarhizium is a soil-inhabiting fungus currently used as a biological control agent against various insect species, and research efforts are typically focused on its ability to kill insects. In section 1, we tested the hypothesis that species of Metarhizium are not randomly distributed in soils but show plant rhizosphere-specific associations. Results indicated an association of three Metarhizium species (Metarhizium robertsii, M. brunneum and M. guizhouense) with the rhizosphere of certain types of plant species. M. robertsii was the only species that was found associated with grass roots, suggesting a possible exclusion of M. brunneum and M. guizhouense, which was supported by in vitro experiments with grass root exudate. M. guizhouense and M. brunneum only associated with wildflower rhizosphere when co-occurring with M. robertsii. With the exception of these co-occurrences, M. guizhouense was found to associate exclusively with the rhizosphere of tree species, while M. brunneum was found to associate exclusively with the rhizosphere of shrubs and trees. These associations demonstrate that different species of Metarhizium associate with specific plant types. In section 2, we explored the variation in the insect adhesin, Madl, and the plant adhesin, Mad2, in fourteen isolates of Metarhizium representing seven different species. Analysis of the transcriptional elements within the Mad2 promoter region revealed variable STRE, PDS, degenerative TATA box, and TATA box-like regions. Phylogenetic analysis of 5' EF-Ia, which is used for species identification, as well as Madl and Mad2 sequences demonstrated that the Mad2 phylogeny is more congruent with 5' EF-1a than Madl. This suggests Mad2 has diverged among Metarhizium lineages, contributing to clade- and species-specific variation. While other abiotic and biotic factors cannot be excluded in contributing to divergence, it appears that plant associations have been the driving factor causing divergence among Metarhizium species.