959 resultados para DIMENSIONAL MODEL
Resumo:
The objective of this paper is the development of a building cost estimation model whose purpose is to quickly and precisely evaluate rebuilding costs for historic heritage buildings affected by catastrophic events. Specifically, this study will be applied to the monumental buildings owned by the Catholic Church that were affected by two earthquakes on May 11, 2011 in the town of Lorca. To estimate the initial total replacement cost new, calculation model will be applied which, on the one hand, will use two-dimensional metric exterior parameters and, on the other, three-dimensional interior cubic parameters. Based on the total of the analyzed buildings, and considering damage caused by the seismic event, the final reconstruction cost for the building units ruined by the earthquakes can be estimated. The proposed calculation model can also be applied to other emergency scenarios and situations for the quick estimation of construction costs necessary for rebuilding historic heritage buildings which have been affected by catastrophic events that deteriorate or ruin their structural or constructive configuration.
Resumo:
A nonlinear implicit finite element model for the solution of two-dimensional (2-D) shallow water equations, based on a Galerkin formulation of the 2-D estuaries hydrodynamic equations, has been developed. Spatial discretization has been achieved by the use of isoparametric, Lagrangian elements. To obtain the different element matrices, Simpson numerical integration has been applied. For time integration of the model, several schemes in finite differences have been used: the Cranck-Nicholson iterative method supplies a superior accuracy and allows us to work with the greatest time step Δt; however, central differences time integration produces a greater velocity of calculation. The model has been tested with different examples to check its accuracy and advantages in relation to computation and handling of matrices. Finally, an application to the Bay of Santander is also presented.
Resumo:
In this work, an improvement of the results presented by [1] Abellanas et al. (Weak Equilibrium in a Spatial Model. International Journal of Game Theory, 40(3), 449-459) is discussed. Concretely, this paper investigates an abstract game of competition between two players that want to earn the maximum number of points from a finite set of points in the plane. It is assumed that the distribution of these points is not uniform, so an appropriate weight to each position is assigned. A definition of equilibrium which is weaker than the classical one is included in order to avoid the uniqueness of the equilibrium position typical of the Nash equilibrium in these kinds of games. The existence of this approximated equilibrium in the game is analyzed by means of computational geometry techniques.
Resumo:
Esta tesis contiene una investigación detallada sobre las características y funcionamiento de las máquinas de medición por visión. El objetivo fundamental es modelar su comportamiento y dotarlas de trazabilidad metrológica bajo cualquier condición de medida. Al efecto, se ha realizado un exhaustivo análisis de los elementos que conforman su cadena de medición, a saber: sistema de iluminación, estructura, lentes y objetivos, cámara, software de tratamiento de imágenes y software de cálculo. Se han definido modelos físico-matemáticos, de desarrollo propio, capaces de simular con fiabilidad el comportamiento de los elementos citados, agrupados, a efectos de análisis numérico, en dos subsistemas denominados: de visión y mecánico. Se han implementado procedimientos de calibración genuinos para ambos subsistemas mediante el empleo de patrones ópticos. En todos los casos se ha podido determinar la incertidumbre asociada a los diferentes parámetros involucrados, garantizando la trazabilidad metrológica de los resultados. Los distintos modelos desarrollados han sido implementados en Matlab®. Se ha verificado su validez empleando valores sintéticos obtenidos a partir de simulaciones informáticas y también con imágenes reales capturadas en el laboratorio. El estudio experimental y validación definitiva de los resultados se ha realizado en el Laboratorio de Longitud del Centro Español de Metrología y en el Laboratorio de Metrología Dimensional de la ETS de Ingeniería y Diseño Industrial de la UPM. Los modelos desarrollados se han aplicado a dos máquinas de medición por visión de diferentes características constructivas y metrológicas. Empleando dichas máquinas se han medido distintas piezas, pertenecientes a los ámbitos mecánico y oftalmológico. Los resultados obtenidos han permitido la completa caracterización dimensional de dichas piezas y la determinación del cumplimiento de las especificaciones metrológicas en todos los casos, incluyendo longitudes, formas y ángulos. ABSTRACT This PhD thesis contains a detailed investigation of characteristics and performance of the optical coordinate measurement machines. The main goal is to model their behaviour and provide metrological traceability to them under any measurement conditions. In fact, a thorough analysis of the elements which form the measuring chain, i.e.: lighting system, structure, lenses and objectives, camera, image processing software and coordinate metrology software has conducted. Physical-mathematical models, of self-developed, able to simulate with reliability the behavior of the above elements, grouped, for the purpose of numerical analysis, in two subsystems called: “vision subsystem” and “mechanical subsystem”, have been defined. Genuine calibration procedures for both subsystems have been implemented by use of optical standards. In all cases, it has been possible to determine the uncertainty associated with the different parameters involved, ensuring metrological traceability of results. Different developed models have been implemented in Matlab®. Their validity has been verified using synthetic values obtained from computer simulations and also with real images captured in laboratory. The experimental study and final validation of the results was carried out in the Length Laboratory of “Centro Español de Metrología” and Dimensional Metrology Laboratory of the “Escuela Técnica Superior de Ingeniería y Diseño Industrial” of the UPM. The developed models have been applied to two optical coordinate measurement machines with different construction and metrological characteristics. Using such machines, different parts, belonging to the mechanical and ophthalmologist areas, have been measured. The obtained results allow the full dimensional characterization of such parts and determination of compliance with metrological specifications in all cases, including lengths, shapes and angles.
Resumo:
The stability of an infinitely long compound liquid column is analysed by using a one-dimensional inviscid slice model. Results obtained from this one-dimensional linear analysis are applicable to the study of compound capillary jets, which are used in the ink-jet printing technique. Stability limits and the breaking regimes of such fluid configurations are established, and, whenever possible, theoretical results are compared with experimental ones.
Resumo:
This paper presents an experimental and systematic investigation about how geometric parameters on a biplane configuration have an influence on aerodynamic parameters. This experimental investigation has been developed in a two-dimensional approach. Theoretical studies about biplanes configurations have been developed in the past, but there is not enough information about experimental wind tunnel data at low Reynolds number. This two-dimensional study is a first step to further tridimensional investigations about the box wing configuration. The main objective of the study is to find the relationships between the geometrical parameters which present the best aerodynamic behavior: the highest lift, the lowest drag and the lowest slope of the pitching moment. A tridimensional wing-box model will be designed following the pattern of the two dimensional study conclusions. It will respond to the geometrical relationships that have been considered to show the better aerodynamic behavior. This box-wing model will be studied in the aim of comparing the advantages and disadvantages between this biplane configuration and the plane configuration, looking for implementing the box-wing in the UAV?s field. Although the box wing configuration has been used in a small number of existing UAV, prestigious researchers have found it as a field of high aerodynamic and structural potential.
Resumo:
The filling-withdrawal process of a long liquid bridge is analyzed using a one-dimensional linearized model for the dynamics of the liquid column. To carry out this study, a well-known standard operational method (Laplace transform) has been used, and time variation of both liquid velocity field and interface shape are obtained.
Resumo:
Nowadays, it has become evident the need to seek sustainable development models that address challenges arising in a variety of contexts. The resilience concept appears connected to the ability of people to cope with adversities that inevitably arise due to context dynamics, at different spatial and temporal scales. This concept is related to the model known as Working With People (WWP), focused on rural development projects planning, management and evaluation, from the integration of three dimensions: technical-entrepreneurial, ethical-social and political-contextual. The research reported is part of the RETHINK European Project, whose overall aim is farm modernization and rural resilience. The resilience concept has been analyzed, in the scope of rural development projects management, and a relationship with the WWP model has been established. To this end, a thorough review of the scientific literature concerning this topic has been addressed, in order to develop the state of the art of the different concepts and models involved. A conceptual proposal for the integration of resilience in rural development projects sustainable management, through the three-dimensional WWP model is presented.
Resumo:
In previous papers, the type-I intermittent phenomenon with continuous reinjection probability density (RPD) has been extensively studied. However, in this paper type-I intermittency considering discontinuous RPD function in one-dimensional maps is analyzed. To carry out the present study the analytic approximation presented by del Río and Elaskar (Int. J. Bifurc. Chaos 20:1185-1191, 2010) and Elaskar et al. (Physica A. 390:2759-2768, 2011) is extended to consider discontinuous RPD functions. The results of this analysis show that the characteristic relation only depends on the position of the lower bound of reinjection (LBR), therefore for the LBR below the tangent point the relation {Mathematical expression}, where {Mathematical expression} is the control parameter, remains robust regardless the form of the RPD, although the average of the laminar phases {Mathematical expression} can change. Finally, the study of discontinuous RPD for type-I intermittency which occurs in a three-wave truncation model for the derivative nonlinear Schrodinger equation is presented. In all tests the theoretical results properly verify the numerical data
Resumo:
Abstract Interneuron classification is an important and long-debated topic in neuroscience. A recent study provided a data set of digitally reconstructed interneurons classified by 42 leading neuroscientists according to a pragmatic classification scheme composed of five categorical variables, namely, of the interneuron type and four features of axonal morphology. From this data set we now learned a model which can classify interneurons, on the basis of their axonal morphometric parameters, into these five descriptive variables simultaneously. Because of differences in opinion among the neuroscientists, especially regarding neuronal type, for many interneurons we lacked a unique, agreed-upon classification, which we could use to guide model learning. Instead, we guided model learning with a probability distribution over the neuronal type and the axonal features, obtained, for each interneuron, from the neuroscientists’ classification choices. We conveniently encoded such probability distributions with Bayesian networks, calling them label Bayesian networks (LBNs), and developed a method to predict them. This method predicts an LBN by forming a probabilistic consensus among the LBNs of the interneurons most similar to the one being classified. We used 18 axonal morphometric parameters as predictor variables, 13 of which we introduce in this paper as quantitative counterparts to the categorical axonal features. We were able to accurately predict interneuronal LBNs. Furthermore, when extracting crisp (i.e., non-probabilistic) predictions from the predicted LBNs, our method outperformed related work on interneuron classification. Our results indicate that our method is adequate for multi-dimensional classification of interneurons with probabilistic labels. Moreover, the introduced morphometric parameters are good predictors of interneuron type and the four features of axonal morphology and thus may serve as objective counterparts to the subjective, categorical axonal features.
Resumo:
Interneuron classification is an important and long-debated topic in neuroscience. A recent study provided a data set of digitally reconstructed interneurons classified by 42 leading neuroscientists according to a pragmatic classification scheme composed of five categorical variables, namely, of the interneuron type and four features of axonal morphology. From this data set we now learned a model which can classify interneurons, on the basis of their axonal morphometric parameters, into these five descriptive variables simultaneously. Because of differences in opinion among the neuroscientists, especially regarding neuronal type, for many interneurons we lacked a unique, agreed-upon classification, which we could use to guide model learning. Instead, we guided model learning with a probability distribution over the neuronal type and the axonal features, obtained, for each interneuron, from the neuroscientists’ classification choices. We conveniently encoded such probability distributions with Bayesian networks, calling them label Bayesian networks (LBNs), and developed a method to predict them. This method predicts an LBN by forming a probabilistic consensus among the LBNs of the interneurons most similar to the one being classified. We used 18 axonal morphometric parameters as predictor variables, 13 of which we introduce in this paper as quantitative counterparts to the categorical axonal features. We were able to accurately predict interneuronal LBNs. Furthermore, when extracting crisp (i.e., non-probabilistic) predictions from the predicted LBNs, our method outperformed related work on interneuron classification. Our results indicate that our method is adequate for multi-dimensional classification of interneurons with probabilistic labels. Moreover, the introduced morphometric parameters are good predictors of interneuron type and the four features of axonal morphology and thus may serve as objective counterparts to the subjective, categorical axonal features.
Resumo:
In the cerebral cortex, most synapses are found in the neuropil, but relatively little is known about their 3-dimensional organization. Using an automated dual-beam electron microscope that combines focused ion beam milling and scanning electron microscopy, we have been able to obtain 10 three-dimensional samples with an average volume of 180 µm(3) from the neuropil of layer III of the young rat somatosensory cortex (hindlimb representation). We have used specific software tools to fully reconstruct 1695 synaptic junctions present in these samples and to accurately quantify the number of synapses per unit volume. These tools also allowed us to determine synapse position and to analyze their spatial distribution using spatial statistical methods. Our results indicate that the distribution of synaptic junctions in the neuropil is nearly random, only constrained by the fact that synapses cannot overlap in space. A theoretical model based on random sequential absorption, which closely reproduces the actual distribution of synapses, is also presented.
Resumo:
The multi-dimensional classification problem is a generalisation of the recently-popularised task of multi-label classification, where each data instance is associated with multiple class variables. There has been relatively little research carried out specific to multi-dimensional classification and, although one of the core goals is similar (modelling dependencies among classes), there are important differences; namely a higher number of possible classifications. In this paper we present method for multi-dimensional classification, drawing from the most relevant multi-label research, and combining it with important novel developments. Using a fast method to model the conditional dependence between class variables, we form super-class partitions and use them to build multi-dimensional learners, learning each super-class as an ordinary class, and thus explicitly modelling class dependencies. Additionally, we present a mechanism to deal with the many class values inherent to super-classes, and thus make learning efficient. To investigate the effectiveness of this approach we carry out an empirical evaluation on a range of multi-dimensional datasets, under different evaluation metrics, and in comparison with high-performing existing multi-dimensional approaches from the literature. Analysis of results shows that our approach offers important performance gains over competing methods, while also exhibiting tractable running time.
Resumo:
The impact of the Parkinson's disease and its treatment on the patients' health-related quality of life can be estimated either by means of generic measures such as the european quality of Life-5 Dimensions (EQ-5D) or specific measures such as the 8-item Parkinson's disease questionnaire (PDQ-8). In clinical studies, PDQ-8 could be used in detriment of EQ-5D due to the lack of resources, time or clinical interest in generic measures. Nevertheless, PDQ-8 cannot be applied in cost-effectiveness analyses which require generic measures and quantitative utility scores, such as EQ-5D. To deal with this problem, a commonly used solution is the prediction of EQ-5D from PDQ-8. In this paper, we propose a new probabilistic method to predict EQ-5D from PDQ-8 using multi-dimensional Bayesian network classifiers. Our approach is evaluated using five-fold cross-validation experiments carried out on a Parkinson's data set containing 488 patients, and is compared with two additional Bayesian network-based approaches, two commonly used mapping methods namely, ordinary least squares and censored least absolute deviations, and a deterministic model. Experimental results are promising in terms of predictive performance as well as the identification of dependence relationships among EQ-5D and PDQ-8 items that the mapping approaches are unable to detect
Resumo:
An impedance-based midspan debonding identification method for RC beams strengthened with FRP strips is presented in this paper using piezoelectric ceramic (PZT) sensor?actuators. To reach this purpose, firstly, a two-dimensional electromechanical impedance model is proposed to predict the electrical admittance of the PZT transducer bonded to the FRP strips of an RC beam. Considering the impedance is measured in high frequencies, a spectral element model of the bonded-PZT?FRP strengthened beam is developed. This model, in conjunction with experimental measurements of PZT transducers, is used to present an updating methodology to quantitatively detect interfacial debonding of these kinds of structures. To improve the performance and accuracy of the detection algorithm in a challenging problem such as ours, the structural health monitoring approach is solved with an ensemble process based on particle of swarm. An adaptive mesh scheme has also been developed to increase the reliability in locating the area in which debonding initiates. Predictions carried out with experimental results have showed the effectiveness and potential of the proposed method to detect prematurely at its earliest stages a critical failure mode such as that due to midspan debonding of the FRP strip.