988 resultados para DC resistivity
Resumo:
Although powder metallurgical methods have been used for years to fabricate tungsten and platinum, very little scientific data have been recorded until the beginning of this century. A large percentage of all commercial production at present is based upon past practice rather than upon scientific knowledge.
Office d'inauguration du Temple de l'Union libérale israélite : (Dimanche de Hanouca, 1er déc. 1907)
Resumo:
This paper focuses on two regions in the United States that have emerged as high-technology regions in the absence of major research universities. The case of Portland's Silicon Forest is compared to Washington, DC. In both regions, high-technology economies grew because of industrial restructuring processes. The paper argues that in both regions other actors—such as firms and government laboratories—spurred the development of knowledge-based economies and catalysed the engagement of higher education institutions in economic development. The paper confirms and advances the triple helix model of university–government–industry relationships and posits that future studies have to examine degrees of university-region engagement.
Resumo:
In a first experiment, a reactively sputtered amorphous Ta₄₂Si₁₃N₄₅ film about 260 nm thick deposited on a flat and smooth alumina substrate was thermally annealed in air for 30 min and let cooled again repeatedly at successively higher temperatures from 200 to 500 °C. This treatment successively and irreversibly increases the room temperature resistivity of the film monotonically from its initial value of 670 μΩ cm to a maximum of 705 μΩ cm (+5.2 %). Subsequent heat treatments at temperatures below 500 °C and up to 6 h have no further effect on the room temperature resistivity. The new value remains unchanged after 3.8 years of storage at room temperature. In a second experiment, the evolution of the initially compressive stress of a film similarly deposited by reactive sputtering on a 2-inch silicon wafer was measured by tracking the wafer curvature during similar thermal annealing cycles. A similar pattern of irreversible and reversible changes of stress was observed as for the film resistivity. Transmission electron micrographs and secondary ion mass profiles of the film taken before and after thermal annealing in air establish that both the structure and the composition of the film scarcely change during the annealing cycles. We reason that the film stress is implicated in the resistivity change. In particular, to interpret the observations, a model is proposed where the interface between the film and the substrate is mechanically unyielding.
Resumo:
anonym