992 resultados para DAMAGE EVOLUTION
Resumo:
Motivated by the observation of the rate effect on material failure, a model of nonlinear and nonlocal evolution is developed, that includes both stochastic and dynamic effects. In phase space a transitional region prevails, which distinguishes the failure behavior from a globally stable one to that of catastrophic. Several probability functions are found to characterize the distinctive features of evolution due to different degrees of nucleation, growth and coalescence rates. The results may provide a better understanding of material failure.
Resumo:
A modified split Hopkinson torsional bar (SHTB) is introduced to eliminate the effect of the loading reverberation of the standard SHTB on the study of evolution of shear localization. The effect, the cause and the method by which to eliminate loading wave reverberation are carefully analysed and discussed. By means of the modified apparatus, the post-mortem observation of tested specimens can provide data on actual evolution of micro-structure and micro-damage during shear localization. Some test results of shear banding conducted with this apparatus support the use of the modified design. Moreover, the modification makes possible the correlation of evolving micro-structures to the transient shear stress-strain recording.
Resumo:
The nucleation of microdamage under dynamic loading was investigated through planar impact experiments accomplished with a light gas gun. The microscopic observation of recovered and sectioned specimens showed that microcracks were nucleated only by cracking of brittle particles inside material. However, for comparison the in situ static tensile tests on the same material conducted with a scanning electron microscope showed that the microcracks were nucleated by many forms those were fracture of ductile matrix, debonding particles from matrix and cracking of brittle particles. The quantitative metallographic observations of the specimens subjected to impact loading showed that most of the cracked particles were situated on grain boundaries of the aluminium matrix. These facts suggested the concept of critical size and incubation time of submicroscopic cavities in the dynamic case and the mechanism of embryo-damage induced nucleation by fracture of brittle particles in the aluminium alloy under impact loading was proposed.
Resumo:
A void growth relations for ductile porous materials under intense dynamic general loading condition is presented. The mathematical model includes the influence of inertial effects, material rate sensitivity, as well as the contribution of void surface energy and material work-hardening. Numerical analysis shows that inertia appears to resist the growth of voids. The inertial effects increase quickly with the loading rates. The theoretical analysis suggests that the inertial effects cannot be neglected at high loading rates. Plate-impact tests of aluminum alloy are performed with light gas gun. The processes of dynamic damage in aluminum alloy are successfully simulated with a finite-difference dynamic code in which the theoretical model presented in this paper is incorporated.
Resumo:
A new interrupting method was proposed and the split Hopkinson torsional bar (SHTB) was modified in order to eliminate the effect of loading reverberation on post-mortem observations. This makes the comparative study of macro- and microscopic observations on tested materials and relevant transient measurement of tau - gamma curve possible. The experimental results of the evolution of shear localization in in Ti-6Al-4V alloy studied with the modified SHTB are reported in the paper. The collapse of shear stress seems to be closely related to the appearance of a certain critical coalescence of microcracks. The voids may form within the localized shear zone at a quite early stage. Finally, void coalescence results in elongated cavities and their extension leads to fracture along the shear band.
Resumo:
Fracture due to coalescence of microcracks seems to be catalogued in a new model of evolution induced catastrophe (EIC). The key underlying mechanism of the EIC is its automatically enlarging interaction of microcracks. This leads to an explosively evolving catastrophe. Most importantly, the EIC presents a fractal dimension spectrum which appears to be dependent on the interaction.
Resumo:
The ideal micro-cracks are treated with the number-density function; the characteristics of their evolution are investigated; a deterministic model is applied to the discussion of their extension. It is discovered that under certain conditions saturation may occur in the number-density. The main features of the statistical formulation are illustrated by several examples and compared with those observed in experiments.
Resumo:
The mechanism of ductile damage caused by secondary void damage in the matrix around primary voids is studied by large strain, finite element analysis. A cylinder embedding an initially spherical void, a plane stress cell with a circular void and plane strain cell with a cylindrical or a flat void are analysed under different loading conditions. Secondary voids of smaller scale size nucleate in the strain hardening matrix, according to the requirements of some stress/strain criteria. Their growth and coalescence, handled by the empty element technique, demonstrate distinct mechanisms of damage as circumstances change. The macroscopic stress-strain curves are decomposed and illustrated in the form of the deviatoric and the volumetric parts. Concerning the stress response and the void growth prediction, comparisons are made between the present numerical results and those of previous authors. It is shown that loading condition, void growth history and void shape effect incorporated with the interaction between two generations of voids should be accounted for besides the void volume fraction.
Resumo:
been analyzed in detail. The effects ofm icroscopic energy transfer from
Resumo:
This paper presents a general self-consistent theory of evolution and propagation of wavelets on the galactic disk. A simplified model for this theory, i. e. the thin transition-layer approximation is proposed.There are three types of solutions to the basic equation governing the evolution of wavelets on the disk: (ⅰ) normal propagating type; (ⅱ) swing type; (ⅲ) general evolving type. The results show that the first two types are applicable to a certain domain on the galactic disk and a certain region of the wave number of wavelets. The third is needed to join the other two types and to yield a coherent total picture of the wave motion. From the present theory, it can be seen that the well-known "swing theory" of the G-L sheet model holds only for a certain class of basic states of galaxies.
Resumo:
In this paper, the effect of current on the evolution of a solitary wave is studied. The governing equation in the far field, KdV equation with variable coefficients, is derived. A solitary wave solution is obtained. The fission of a solitary wave is discussed, and the fissible region on the Q~h2-plane and the criterion of the number of the solitary waves after fission are found.
Resumo:
In this part of the present work, a simplified model—the thin transition layer theory is proposed. The comparison of this model with the G-L sheet model is made.