942 resultados para Cytoplasmic filaments
Resumo:
Within the project SPURT (trace gas measurements in the tropopause region) a variety of trace gases have been measured in situ in order to investigate the role of dynamical and chemical processes in the extra-tropical tropopause region. In this paper we report on a flight on 10 November 2001 leading from Hohn, Germany (52�N) to Faro, Portugal (37�N) through a strongly developed deep stratospheric intrusion. This streamer was associated with a large convective system over the western Mediterranean with potentially significant troposphere-to-stratosphere transport. Along major parts of the flight we measured unexpectedly high NOy mixing ratios. Also H2O mixing ratios were significantly higher than stratospheric background levels confirming the extraordinary chemical signature of the probed air masses in the interior of the streamer. Backward trajectories encompassing the streamer enable to analyze the origin and physical characteristics of the air masses and to trace troposphere-to-stratosphere transport. Near the western flank of the streamer features caused by long range transport, such as tropospheric filaments characterized by sudden drops in the O3 and NOy mixing ratios and enhanced CO and H2O can be reconstructed in great detail using the reverse domain filling technique. These filaments indicate a high potential for subsequent mixing with the stratospheric air. At the south-western edge of the streamer a strong gradient in the NOy and the O3 mixing ratios coincides very well with a sharp gradient in potential vorticity in the ECMWF fields. In contrast, in the interior of the streamer the observed highly elevated NOy and H2O mixing ratios up to a potential temperature level of 365K and potential vorticity values of maximum 10 PVU cannot be explained in terms of resolved troposphere-to-stratosphere transport along the backward trajectories. Also mesoscale simulations with a High Resolution Model reveal no direct evidence for convective H2O injection up to this level. Elevated H2O mixing ratios in the ECMWF and HRM are seen only up to about tropopause height at 340 hPa and 270 hPa, respectively, well below flight altitude of about 200 hPa. However, forward tracing of the convective influence as identified by satellite brightness temperature measurements and counts of lightning strokes shows that during this part of the flight the aircraft was closely following the border of an air mass which was heavily impacted by convective activity over Spain and Algeria. This is evidence that deep convection at mid-latitudes may have a large impact on the tracer distribution of the lowermost stratosphere reaching well above the thunderstorms anvils as claimed by recent studies using cloud-resolving models.
Resumo:
HD (Huntington's disease) is a late onset heritable neurodegenerative disorder that is characterized by neuronal dysfunction and death, particularly in the cerebral cortex and medium spiny neurons of the striatum. This is followed by progressive chorea, dementia and emotional dysfunction, eventually resulting in death. HD is caused by an expanded CAG repeat in the first exon of the HD gene that results in an abnormally elongated polyQ (polyglutamine) tract in its protein product, Htt (Huntingtin). Wild-type Htt is largely cytoplasmic; however, in HD, proteolytic N-terminal fragments of Htt form insoluble deposits in both the cytoplasm and nucleus, provoking the idea that mutHtt (mutant Htt) causes transcriptional dysfunction. While a number of specific transcription factors and co-factors have been proposed as mediators of mutHtt toxicity, the causal relationship between these Htt/transcription factor interactions and HD pathology remains unknown. Previous work has highlighted REST [RE1 (repressor element 1)-silencing transcription factor] as one such transcription factor. REST is a master regulator of neuronal genes, repressing their expression. Many of its direct target genes are known or suspected to have a role in HD pathogenesis, including BDNF (brain-derived neurotrophic factor). Recent evidence has also shown that REST regulates transcription of regulatory miRNAs (microRNAs), many of which are known to regulate neuronal gene expression and are dysregulated in HD. Thus repression of miRNAs constitutes a second, indirect mechanism by which REST can alter the neuronal transcriptome in HD. We will describe the evidence that disruption to the REST regulon brought about by a loss of interaction between REST and mutHtt may be a key contributory factor in the widespread dysregulation of gene expression in HD.
Resumo:
A plasma source, sustained by the application of a floating high voltage (±15 kV) to parallel-plate electrodes at 50 Hz, has been achieved in a helium/air mixture at atmospheric pressure (P = 105 Pa) contained in a zip-locked plastic package placed in the electrode gap. Some of the physical and antimicrobial properties of this apparatus were established with a view to ascertain its performance as a prototype for the disinfection of fresh produce. The current–voltage (I–V) and charge–voltage (Q–V) characteristics of the system were measured as a function of gap distance d, in the range (3 × 103 ≤ Pd ≤ 1.0 × 104 Pa m). The electrical measurements showed this plasma source to exhibit the characteristic behaviour of a dielectric barrier discharge in the filamentary mode and its properties could be accurately interpreted by the two-capacitance in series model. The power consumed by the discharge and the reduced field strength were found to decrease quadratically from 12.0 W to 4.5 W and linearly from 140 Td to 50 Td, respectively, in the range studied. Emission spectra of the discharge were recorded on a relative intensity scale and the dominant spectral features could be assigned to strong vibrational bands in the 2+ and 1− systems of N2 and ${\rm N}_2^+$ , respectively, with other weak signatures from the NO and OH radicals and the N+, He and O atomic species. Absolute spectral intensities were also recorded and interpreted by comparison with the non-equilibrium synthetic spectra generated by the computer code SPECAIR. At an inter-electrode gap of 0.04 m, this comparison yielded typical values for the electron, vibrational and translational (gas) temperatures of (4980 ± 100) K, (2700 ± 200) K and (300 ± 100) K, respectively and an electron density of 1.0 × 1017 m−3. A Boltzmann plot also provided a value of (3200 ± 200 K) for the vibrational temperature. The antimicrobial efficacy was assessed by studying the resistance of both Escherichia coli K12 its isogenic mutants in soxR, soxS, oxyR, rpoS and dnaK selected to identify possible cellular responses and targets related with 5 min exposure to the active gas in proximity of, but not directly in, the path of the discharge filaments. Both the parent strain and mutants populations were significantly reduced by more than 1.5 log cycles in these conditions, showing the potential of the system. Post-treatment storage studies showed that some transcription regulators and specific genes related to oxidative stress play an important role in the E. coli repair mechanism and that plasma exposure affects specific cell regulator systems.
Resumo:
The glutamate decarboxylase (GAD) system has been shown to be important for the survival of Listeria monocytogenes in low pH environments. The bacterium can use this faculty to maintain pH homeostasis under acidic conditions. The accepted model for the GAD system proposes that the antiport of glutamate into the bacterial cell in exchange for γ-aminobutyric acid (GABA) is coupled to an intracellular decarboxylation reaction of glutamate into GABA that consumes protons and therefore facilitates pH homeostasis. Most strains of L. monocytogenes possess three decarboxylase genes (gadD1, D2 & D3) and two antiporter genes (gadT1 & gadT2). Here, we confirm that the gadD3 encodes a glutamate decarboxylase dedicated to the intracellular GAD system (GADi), which produces GABA from cytoplasmic glutamate in the absence of antiport activity. We also compare the functionality of the GAD system between two commonly studied reference strains, EGD-e and 10403S with differences in terms of acid resistance. Through functional genomics we show that EGD-e is unable to export GABA and relies exclusively in the GADi system, which is driven primarily by GadD3 in this strain. In contrast 10403S relies upon GadD2 to maintain both an intracellular and extracellular GAD system (GADi/GADe). Through experiments with a murinised variant of EGD-e (EGDm) in mice, we found that the GAD system plays a significant role in the overall virulence of this strain. Double mutants lacking either gadD1D3 or gadD2D3 of the GAD system displayed reduced acid tolerance and were significantly affected in their ability to cause infection following oral inoculation. Since EGDm exploits GADi but not GADe the results indicate that the GADi system makes a contribution to virulence within the mouse. Furthermore, we also provide evidence that there might be a separate line of evolution in the GAD system between two commonly used reference strains.
Resumo:
OBJECTIVE: Platelet endothelial cell adhesion molecule-1 (PECAM-1) regulates platelet response to multiple agonists. How this immunoreceptor tyrosine-based inhibitory motif-containing receptor inhibits G protein-coupled receptor-mediated thrombin-induced activation of platelets is unknown. APPROACH AND RESULTS: Here, we show that the activation of PECAM-1 inhibits fibrinogen binding to integrin αIIbβ3 and P-selectin surface expression in response to thrombin (0.1-3 U/mL) but not thrombin receptor-activating peptides SFLLRN (3×10(-7)-1×10(-5) mol/L) and GYPGQV (3×10(-6)-1×10(-4) mol/L). We hypothesized a role for PECAM-1 in reducing the tethering of thrombin to glycoprotein Ibα (GPIbα) on the platelet surface. We show that PECAM-1 signaling regulates the binding of fluorescein isothiocyanate-labeled thrombin to the platelet surface and reduces the levels of cell surface GPIbα by promoting its internalization, while concomitantly reducing the binding of platelets to von Willebrand factor under flow in vitro. PECAM-1-mediated internalization of GPIbα was reduced in the presence of both EGTA and cytochalasin D or latrunculin, but not either individually, and was reduced in mice in which tyrosines 747 and 759 of the cytoplasmic tail of β3 integrin were mutated to phenylalanine. Furthermore, PECAM-1 cross-linking led to a significant reduction in the phosphorylation of glycogen synthase kinase-3β Ser(9), but interestingly an increase in glycogen synthase kinase-3α pSer(21). PECAM-1-mediated internalization of GPIbα was reduced by inhibitors of dynamin (Dynasore) and glycogen synthase kinase-3 (CHIR99021), an effect that was enhanced in the presence of EGTA. CONCLUSIONS: PECAM-1 mediates internalization of GPIbα in platelets through dual AKT/protein kinase B/glycogen synthase kinase-3/dynamin-dependent and αIIbβ3-dependent mechanisms. These findings expand our understanding of how PECAM-1 regulates nonimmunoreceptor signaling pathways and helps to explains how PECAM-1 regulates thrombosis.
Resumo:
Identifying the source of atmospheric rivers: Are they rivers of moisture exported from the subtropics or footprints left behind by poleward travelling storms? The term atmospheric river is used to describe corridors of strong water vapor transport in the troposphere. Filaments of enhanced water vapor, commonly observed in satellite imagery extending from the subtropics to the extratropics, are routinely used as a proxy for identifying these regions of strong water vapor transport. The precipitation associated with these filaments of enhanced water vapor can lead to high impact flooding events. However, there remains some debate as to how these filaments form. In this paper we analyse the transport of water vapor within a climatology of wintertime North Atlantic extratropical cyclones. Results show that atmospheric rivers are formed by the cold front which sweeps up water vapor in the warm sector as it catches up with the warm front. This causes a narrow band of high water vapor content to form ahead of the cold front at the base of the warm conveyor belt airflow. Thus, water vapor in the cyclone's warm sector, and not long-distance transport of water vapor from the subtropics, is responsible for the generation of filaments of high water vapor content. A continuous cycle of evaporation and moisture convergence within the cyclone replenishes water vapor lost via precipitation. Thus, rather than representing a direct and continuous feed of moist air from the subtropics into the centre of a cyclone (as suggested by the term atmospheric river), these filaments are, in-fact, the result of water vapor exported from the cyclone and thus they represent the footprints left behind as cyclones travel polewards from subtropics.
Resumo:
Factor Inhibiting HIF (FIH) is an oxygen-dependent asparaginyl hydroxylase that regulates the hypoxia-inducible factors (HIFs). Several proteins containing ankyrin repeat domains have been characterised as substrates of FIH, although there is little evidence for a functional consequence of hydroxylation on these substrates. This study demonstrates that the transient receptor potential vanilloid 3 (TRPV3) channel is hydroxylated by FIH on asparagine 242 within the cytoplasmic ankyrin repeat domain. Hypoxia, FIH inhibitors and mutation of asparagine 242 all potentiated TRPV3-mediated current, without altering TRPV3 protein levels, indicating that oxygen-dependent hydroxylation inhibits TRPV3 activity. This novel mechanism of channel regulation by oxygendependent asparaginyl hydroxylation is likely to extend to other ion channels.
Resumo:
The link between natural ion-line enhancements in radar spectra and auroral activity has been the subject of recent studies but conclusions have been limited by the spatial and temporal resolution previously available. The next challenge is to use shorter sub-second integration times in combination with interferometric programmes to resolve spatial structure within the main radar beam, and so relate enhanced filaments to individual auroral rays. This paper presents initial studies of a technique, using optical and spectral satellite signatures, to calibrate the received phase of a signal with the position of the scattering source along the interferometric baseline of the EISCAT Svalbard Radar. It is shown that a consistent relationship can be found only if the satellite passage through the phase fringes is adjusted from the passage predicted by optical tracking. This required adjustment is interpreted as being due to the vector between the theoretical focusing points of the two antennae, i.e. the true radar baseline, differing from the baseline obtained by survey between the antenna foot points. A method to obtain a measurement of the true interferometric baseline using multiple satellite passes is outlined.
Resumo:
The Eph kinases, EphA4 and EphB1 and their ligand, ephrinB1 have been previously reported to be present in platelets where they contribute to thrombus stability. While thrombus formation allows for Eph-ephrin engagement and bidirectional signalling, the importance specifically of Eph kinase or ephrin signalling in regulating platelet function remained unidentified. In the present study, a genetic approach was used in mice to establish the contribution of signalling orchestrated by the cytoplasmic domain of EphB2 (a newly discovered Eph kinase in platelets) in platelet activation and thrombus formation. We conclude that EphB2 signalling is involved in the regulation of thrombus formation and clot retraction. Furthermore, the cytoplasmic tail of this Eph kinase regulates initial platelet activation in a contact-independent manner in the absence of Eph-ephrin ligation between platelets. Together these data demonstrate that EphB2 signalling not only modulates platelet function within a thrombus but is also involved in the regulation of the function of isolated platelets in a contact-independent manner.
Resumo:
Combined optical and radar observations of two breakup-like auroral events near the polar cap boundary, within 74–76° MLAT and 1210 – 1240 UT (roughly 1540 – 1610 MLT) on 9 Jan. 1989 are reported. A two-component structure of the auroral phenomenon is indicated, with a local intensification of the pre-existing arc as well as a separate, tailward moving discrete auroral event on the poleward side of the background aurora, close to the reversal between well-defined zones of sunward and tailward ion flows. The all-sky TV observations do not indicate a connection between the two components, which also show different optical spectral composition. The 16 MLT background arc is located on sunward convecting field lines, as opposed to the 12–14 MLT auroral emission observed on this day. Although the magnetospheric plasma source (s) of the 16 MLT events are not easily identified from these ground-based data alone, it is suggested that the lower and higher latitude components, may map to the plasma sheet boundary layer and along open field lines to the magnetopause boundary, respectively. The events occur at the time of enhancements of westward ionospheric ion flow and corresponding eastward electrojet current south of 74° MLAT. Thus, they seem to be very significant events, involving periodic (10 min period), tailward moving filaments of field-aligned current/discrete auroral emission at the 16 MLT polar cap boundary.
Resumo:
In unstimulated cells, proteins of the nuclear factor kappaB (NF-kappaB) transcription factor family are sequestered in the cytoplasm through interactions with IkappaB inhibitor proteins. Tumor necrosis factor alpha (TNF-alpha) activates the degradation of IkappaB-alpha and the nuclear import of cytoplasmic NF-kappaB. Nuclear localization of numerous cellular proteins is mediated by the ability of the cytoskeleton, usually microtubules, to direct their perinuclear accumulation. In a former study we have shown that activated NF-kappaB rapidly moves from distal processes in neurons towards the nucleus. The fast transport rate suggests the involvement of motor proteins in the transport of NF-kappaB. Here we address the question how NF-kappaB arrives at the nuclear membrane before import in non-neuronal cells, i.e., by diffusion alone or with the help of active transport mechanisms. Using confocal microscopy imaging and analysis of nuclear protein extracts, we show that NF-kappaB movement through the cytoplasm to the nucleus is independent of the cytoskeleton, in the three cell lines investigated here. Additionally we demonstrate that NF-kappaB p65 is not associated with the dynein/dynactin molecular motor complex. We propose that cells utilize two distinct mechanisms of NF-kappaB transport: (1) signaling via diffusion over short distances in non-neuronal cells and (2) transport via motor proteins that move along the cytoskeleton in neuronal processes where the distances between sites of NF-kappaB activation and nucleus can be vast.
Resumo:
This study describes a simple technique that improves a recently developed 3D sub-diffraction imaging method based on three-photon absorption of commercially available quantum dots. The method combines imaging of biological samples via tri-exciton generation in quantum dots with deconvolution and spectral multiplexing, resulting in a novel approach for multi-color imaging of even thick biological samples at a 1.4 to 1.9-fold better spatial resolution. This approach is realized on a conventional confocal microscope equipped with standard continuous-wave lasers. We demonstrate the potential of multi-color tri-exciton imaging of quantum dots combined with deconvolution on viral vesicles in lentivirally transduced cells as well as intermediate filaments in three-dimensional clusters of mouse-derived neural stem cells (neurospheres) and dense microtubuli arrays in myotubes formed by stacks of differentiated C2C12 myoblasts.
Resumo:
Background: We and others have described the neurodegenerative disorder caused by G51D SNCA mutation which shares characteristics of Parkinson’s disease (PD) and multiple system atrophy (MSA). The objective of this investigation was to extend the description of the clinical and neuropathological hallmarks of G51D mutant SNCA-associated disease by the study of two additional cases from a further G51D SNCA kindred and to compare the features of this group with a SNCA duplication case and a H50Q SNCA mutation case. Results: All three G51D patients were clinically characterised by parkinsonism, dementia, visual hallucinations, autonomic dysfunction and pyramidal signs with variable age at disease onset and levodopa response. The H50Q SNCA mutation case had a clinical picture that mimicked late-onset idiopathic PD with a good and sustained levodopa response. The SNCA duplication case presented with a clinical phenotype of frontotemporal dementia with marked behavioural changes, pyramidal signs, postural hypotension and transiently levodopa responsive parkinsonism. Detailed post-mortem neuropathological analysis was performed in all cases. All three G51D cases had abundant α-synuclein pathology with characteristics of both PD and MSA. These included widespread cortical and subcortical neuronal α-synuclein inclusions together with small numbers of inclusions resembling glial cytoplasmic inclusions (GCIs) in oligodendrocytes. In contrast the H50Q and SNCA duplication cases, had α-synuclein pathology resembling idiopathic PD without GCIs. Phosphorylated α-synuclein was present in all inclusions types in G51D cases but was more restricted in SNCA duplication and H50Q mutation. Inclusions were also immunoreactive for the 5G4 antibody indicating their highly aggregated and likely fibrillar state. Conclusions: Our characterisation of the clinical and neuropathological features of the present small series of G51D SNCA mutation cases should aid the recognition of this clinico-pathological entity. The neuropathological features of these cases consistently share characteristics of PD and MSA and are distinct from PD patients carrying the H50Q or SNCA duplication.
Resumo:
Collagen activates mammalian platelets through a complex of the immunoglobulin (Ig) receptor GPVI and the Fc receptor γ-chain, which has an immunoreceptor tyrosine-based activation motif (ITAM). Cross-linking of GPVI mediates activation through the sequential activation of Src and Syk family kinases and activation of PLCγ2. Nucleated thrombocytes in fish are activated by collagen but lack an ortholog of GPVI. In this study we show that collagen activates trout thrombocytes in whole blood and under flow conditions through a Src kinase driven pathway. We identify the Ig receptor G6f-like as a collagen receptor and demonstrate in a cell line assay that it signals through its cytoplasmic ITAM. Using a morpholino for in vivo knock-down of G6f-like levels in zebrafish, we observed a marked delay or absence of occlusion of the venous and arterial systems in response to laser injury. Thus, G6f-like is a physiologically relevant collagen receptor in fish thrombocytes which signals through the same ITAM-based signalling pathway as mammalian GPVI, providing a novel example of convergent evolution.
Resumo:
GPVI activates platelets through an ITAM pathway by activation of Src and Syk kinases leading to activation of PLCy2. CLEC-2 has been shown to activate platelets using an ITAM-like sequence in its cytoplasmic tail that is also dependent on Src and Syk kinases, but shows a partial rather than an absolute dependence on adapter SLP-76 for activation of PLCy2. The aim of this thesis is to understand some of the key differences in these signalling pathways. GPVI is in complex with FcRwhich contains the ITAM sequence (Yxx(L/I)x6−12Yxx(L/I)). These two tyrosines provide a docking site for the tandem-SH2 domains of Syk. In this thesis I show that CLEC-2 signalling through Syk is mediated by phosphorylation of the CLEC-2 YxxL sequence, receptor dimerisation and cross-linking by the Syk SH2 domains. I also show that the differential requirement for SLP-76 is not mediated by Gads. Both signalling pathways also show partial dependency for LAT. I also show that a novel protein, G6f, is not able to substitute for LAT in this signalling pathway and also exclude the LAT-family proteins PAG, LIME, LAX and NTAL as potential LAT replacements in platelet activation by GPVI. These results extend our understanding of platelet activation by CLEC-2.