935 resultados para Cubic Metals


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mixed models have become important in analyzing the results of experiments, particularly those that require more complicated models (e.g., those that involve longitudinal data). This article describes a method for deriving the terms in a mixed model. Our approach extends an earlier method by Brien and Bailey to explicitly identify terms for which autocorrelation and smooth trend arising from longitudinal observations need to be incorporated in the model. At the same time we retain the principle that the model used should include, at least, all the terms that are justified by the randomization. This is done by dividing the factors into sets, called tiers, based on the randomization and determining the crossing and nesting relationships between factors. The method is applied to formulate mixed models for a wide range of examples. We also describe the mixed model analysis of data from a three-phase experiment to investigate the effect of time of refinement on Eucalyptus pulp from four different sources. Cubic smoothing splines are used to describe differences in the trend over time and unstructured covariance matrices between times are found to be necessary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Approval of the Clean Development Mechanism, provided for in the Kyoto Protocol, enables countries with afforested land to trade in carbon emissions reduction certificates related to carbon dioxide equivalent quantities (CO(2-e)) stored within a certain forest area. Potential CO(2-e) above base line sequestration was determined for two forest sites on commercial eucalyptus plantations in northern Brazil (Bahia). Compensation values for silvicultural regimes involving rotation lengths greater than economically optimal were computed using the Faustmann formula. Mean values obtained were US$8.16 (MgCO(2-e))(-1) and US $7.19 (MgCO(2-e))(-1) for average and high site indexes, respectively. Results show that carbon supply is more cost-efficient in highly productive sites. Annuities of US$18.8 Mg C(-1) and US$35.1 Mg C(-1) and yearly payments of US$4.4 m(-3) and US$8.2 m(-3) due for each marginal cubic meter produced were computed for high and average sites, respectively. The estimated value of the tonne of carbon defines minimum values to be paid to forest owners, in order to induce a change in silvicultural management regimes. A reduction of carbon supply could be expected as a result of an increase in wood prices, although it would not respond in a regular manner. For both sites, price elasticity of supply was found to be inelastic and increased as rotation length moved further away from economically optimal: 0.24 and 0.27 for age 11 years in average- and high-productivity sites, respectively. This would be due to biomass production potential as a limiting factor; beyond a certain threshold value. an increase in price does not sustain a proportional change in carbon storage supply. The environmental service valuation model proposed might be adequate for assessing potential supply in plantation forestry, from a private landowner perspective, with an economic opportunity cost. The model is not applicable to low commercial value forest plantations. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cadmium (Cd) is a toxic heavy metal, which can cause severe damage to plant development. The aim of this work was to characterize ultrastructural changes induced by Cd in miniature tomato cultivar Micro-Tom (MT) mutants and their wild-type counterpart. Leaves of diageotropica (dgt) and Never ripe (Nr) tomato hormonal mutants and wild-type MT were analysed by light, scanning and transmission electron microscopy in order to characterize the structural changes caused by the exposure to 1 mM CdCl(2). The effect of Cd on leaf ultrastructure was observed most noticeably in the chloroplasts, which exhibited changes in organelle shape and internal organization, of the thylakoid membranes and stroma. Cd caused an increase in the intercellular spaces in Nr leaves, but a decrease in the intercellular spaces in dgt leaves, as well as a decrease in the size of mesophyll cells in the mutants. Roots of the tomato hormonal mutants, when analysed by light microscopy, exhibited alterations in root diameter and disintegration of the epidermis and the external layers of the cortex. A comparative analysis has allowed the identification of specific Cd-induced ultrastructural changes in wild-type tomato, the pattern of which was not always exhibited by the mutants. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of arbuscular mycorrhizal fungi (AMF) inoculation on Canavalia ensiformis growth. nutrient and Zn uptake, and on some physiological parameters in response to increasing soil Zn concentrations was studied. Treatments were applied in seven replicates in a 2 x 4 factorial design, consisting of the inoculation or not with the AMF Glomus etunicatum, and the addition of Zn to soil at the concentrations of 0, 100, 300 and 900 mg kg(-1). AMF inoculation enhanced the accumulation of Zn in tissues and promoted biomass yields and root nodulation. Mycorrhizal plants exhibited relative tolerance to Zn up to 300 mg kg(-1) without exhibiting visual symptoms of toxicity, in contrast to non-mycorrhizal plants which exhibited a significant growth reduction at the same soil Zn concentration. The highest concentration of Zn added to soil was highly toxic to the plants. Leaves of plants grown in high Zn concentration exhibited a Zn-induced proline accumulation and also an increase in soluble amino acid contents; however proline contents were lower in mycorrhizal jack beans. Plants in association or not with the AMF exhibited marked differences in the foliar soluble amino acid profile and composition in response to Zn addition to soil. In general, Zn induced oxidative stress which could be verified by increased lipid peroxidation rates and changes in catalase, ascorbate peroxidase, glutathione reductase and superoxide dismutase activities. In summary, G. etunicatum was able to maintain an efficient symbiosis with jack bean plants in moderately contaminated Zn-soils, improving plant performance under those conditions, which is likely to be due to a combination of physiological and nutritional changes caused by the intimate relation between fungus and plant. The enhanced Zn uptake by AMF inoculated jack bean plants might be of interest for phytoremediation purposes. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to its wide industrial use, chromium (Cr) is considered a serious environmental pollutant of aquatic bodies. in order to investigate the ecophysiological responses of water hyacinth [Eichhornia crassipes (Mart.) Solms] to Cr treatment, plants were exposed to 1 and 10 mM Cr(2)O(3) (Cr(3+)) and K(2)Cr(2)O(7) (Cr(6+)) concentrations for two or 4 days in a hydroponic system. Plants exposed to the higher concentration of Cr(6+) for 4 days did not survive, whereas a 2 days treatment with 1 mM Cr(3+) apparently stimulated growth. Analysis of Cr uptake indicated that most of the Cr accumulated in the roots, but some was also translocated and accumulated in the leaves. However, in plants exposed to Cr(6+) (1 mM), a higher translocation of Cr from roots to shoots was observed. it is possible that the conversion from Cr(6+) to Cr(3+), which immobilizes Cr in roots, was not total due to the presence of Cr(6+), causing deleterious effects on gas exchange, chlorophyll a fluorescence and photosynthetic pigment contents. Chlorophyll a was more sensitive to Cr than chlorophyll b. Cr(3+) was shown to be less toxic than Cr(6+) and, in some cases even increased photosynthesis and chlorophyll content. This result indicated that the F(v)/F(0) ratio was more effective than the F(v)/F(m) ratio in monitoring the development of stress by Cr(6+). There was a linear relationship between qP and F(v)/F(m). No statistical differences were observed in NPQ and chlorophyll a/b ratio, but there was a tendency to decrease these values with Cr exposure. This suggests that there were alterations in thylakoid stacking, which might explain the data obtained for gas exchanges and other chlorophyll a fluorescence parameters. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most metal ions are toxic to plants, even at low concentrations, despite the fact that some are essential for growth and play key roles in metabolism. The majority of metals induce the formation of reactive oxygen species, which require the synthesis of additional antoxidant compounds and enzymes for their removal. New techniques that have greatly improved the identification, localisation and quantification of metals within plant tissues have led to the science of metallomics. This advancement in knowledge should eventually allow the characterisation of plants used in the process of phytoremediation of soils contaminated with toxic metals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chlorophyll a fluorescence parameters and transmission electron microscopy (TEM) were used to assess the stress conditions in water hyacinth along the Paraiba do Sul River (PSR), an important River in southeastern Brazil. The data were obtained at the end of the dry season of 2005 and at the end of the wet season of 2006. Changes in F-o and F-m parameters were observed as differentiated responses, depending on the season. Non-photochemical dissipation (qN and NPQ) from plants was greater in the most industrialized region of the PSR in both seasons. However, F-v/F-m for all samples ranged between 0.77 and 0.81, showing that high maximum quantum yield was maintained. Although the F-v/F-m suggests that the plants were exhibiting normal photochemical activities, ultrastructural changes in chloroplasts showed thylakoids disorganization. Plants from the most industrialized region showed non-stacking grana thylakoids disposition. In spite of these alterations, the membrane integrity was maintained, suggesting an adaptation to adjustment to adverse environmental conditions. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of varying concentrations of cadmium (Cd) on the development of Lycopersicon esculentum cv. Micro-Tom (MT) plants were investigated after 40 days (vegetative growth) and 95 days (fruit production), corresponding to 20 days and 75 days of exposure to CdCl(2), respectively. Inhibition of growth was clearly observed in the leaves after 20 days and was greater after 75 days of growth in 1 mM CdCl(2), whereas the fruits exhibited reduced growth following the exposure to a concentration as low as 0.1 mM CdCl(2). Cd was shown to accumulate in the roots after 75 days of growth but was mainly translocated to the upper parts of the plants accumulating to high concentrations in the fruits. Lipid peroxidation was more pronounced in the roots even at 0.05 mM CdCl(2) after 75 days, whereas in leaves, there was a major increase after 20 days of exposure to 1 mM CdCl(2), but the fruit only exhibited a slight significant increase in lipid peroxidation in plants subjected to 1 mM CdCl(2) when compared with the control. Oxidative stress was also investigated by the analysis of four key antioxidant enzymes, which exhibited changes in response to the increasing concentrations of Cd tested. Catalase (EC 1.11.1.6) activity was shown to increase after 75 days of Cd treatment, but the major increases were observed at 0.1 and 0.2 mM CdCl(2), whereas guaiacol peroxidase (EC 1.11.1.7) did not vary significantly from the control in leaves and roots apart from specific changes at 0.5 and 1 mM CdCl(2). The other two enzymes tested, glutathione reductase (EC 1.6.4.2) and superoxide dismutase (SOD, EC 1.15.1.1), did not exhibit any significant changes in activity, apart from a slight decrease in SOD activity at concentrations above 0.2 mM CdCl(2). However, the most striking results were obtained when an extra treatment was used in which a set of plants was subjected to a stepwise increase in CdCl(2) from 0.05 to 1 mM, leading to tolerance of the Cd applied even at the final highest concentration of 1 mM. This apparent adaptation to the toxic effect of Cd was confirmed by biomass values being similar to the control, indicating a tolerance to Cd acquired by the MT plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of irrigation with reclaimed wastewater (RWW) were compared with well water (WW) on citrus (Citrus paradisi Macfad. X Citrus aurantium L) nutrition. The deviation from the optimum percentage (DOP) index of macro- and micro-nutrients were used to evaluate the nutritional status: optimal (DOP = 0), deficiency (DOP < 0) or excess (DOP > 0). After 11 years of RWW irrigation the influence on nutrient concentration in plants decreased in the order: B > Zn > Mn = Ca > Cu > Mg > P > K. Reclaimed wastewater irritation positively affected citrus nutrition as it rendered the concentration of macronutrients, i.e. P, Ca, and K. closer to their optimum levels (Sigma DOP(macro) = 7). However micro-nutrients tended to be excessive in plants (EDOP(micro) = 753) due to imbalanced supply of these elements in the RWW, particularly, for B and Cu. Citrus groves with long-term RWW irrigation may exercised caution in monitoring concentrations of B and Cu to avoid plant toxicity and soil quality degradation. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated the ionic speciation of reclaimed urban wastewater (RWW), and the impact of increasing RWW irrigation rates on soil properties and plant nutrition under field conditions. Most RWW elements (>66%) are readily available as NH(4)(+), Ca(2+), Mg(2+), K(+), SO(4)(2-), Cl(-), H(3)BO(3), Mn(2+) and Zn(2+), but in imbalanced proportion for plant nutrition. Lead, Cd, Cr and Al in RWW are mostly bounded with DOM or OH. Irrigation with RWW decreased soil acidity, which is beneficial to the acidic tropical soil. Although RWW irrigation builds exchangeable Na(+) up, the excessive Na(+) was leached out of the soil profile after a rainy summer season (>400 mm). Benefits of the disposal of RWW to the soil under tropical conditions were discussed, however, the over irrigation with RWW (>100% of crop evapotranspiration) led to a nutritional imbalance, accumulating S and leading to a plant deficiency of P and K. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background, aim, and scope The retention of potentially toxic metals in highly weathered soils can follow different pathways that variably affect their mobility and availability in the soil-water-plant system. This study aimed to evaluate the effects of pH, nature of electrolyte, and ionic strength of the solution on nickel (Ni) adsorption by two acric Oxisols and a less weathered Alfisol. Materials and methods The effect of pH on Ni adsorption was evaluated in surface and subsurface samples from a clayey textured Anionic `Rhodic` Acrudox ( RA), a sandy-clayey textured Anionic `Xantic` Acrudox (XA), and a heavy clayey textured Rhodic Kandiudalf (RK). All soil samples were equilibrated with the same concentration of Ni solution (5.0 mg L(-1)) and two electrolyte solutions (CaCl(2) or NaCl) with different ionic strengths (IS) (1.0, 0.1 and 0.01 mol L(-1)). The pH of each sample set varied from 3 to 10 in order to obtain sorption envelopes. Results and discussion Ni adsorption increased as the pH increased, reaching its maximum of nearly pH 6. The adsorption was highest in Alfisol, followed by RA and XA. Competition between Ni(2+) and Ca(2+) was higher than that between Ni(2+) and Na(+) in all soil samples, as shown by the higher percentage of Ni adsorption at pH 5. At pH values below the intersection point of the three ionic strength curves (zero point of salt effect), Ni adsorption was generally higher in the more concentrated solution (highest IS), probably due to the neutralization of positive charges of soil colloids by Cl(-) ions and consequent adsorption of Ni(2+). Above this point, Ni adsorption was higher in the more diluted solution (lowest ionic strength), due to the higher negative potential at the colloid surfaces and the lower ionic competition for exchange sites in soil colloids. Conclusions The effect of ionic strength was lower in the Oxisols than in the Alfisol. The main mechanism that controlled Ni adsorption in the soils was the ionic exchange, since the adsorption of ionic species varied according to the variation of pH values. The ionic competition revealed the importance of electrolyte composition and ionic strength on Ni adsorption in soils from the humid tropics. Recommendations and perspectives The presence of NaCl or CaCl(2) in different ionic strengths affects the availability of heavy metals in contaminated soils. Therefore, the study of heavy metal dynamics in highly weathered soils must consider this behavior, especially in soils with large amounts of acric components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrochemical processes involved in the development of hydromorphic Podzols are a major concern for the upper Amazon Basin because of the extent of the areas affected by such processes and the large amounts of organic carbon and associated metals exported to the rivers. The dynamics and chemical composition of ground and surface waters were studied along an Acrisol-Podzol sequence lying in an open depression of a plateau. Water levels were monitored along the sequence over a period of 2 years by means of piezometers. Water was sampled in zero-tension lysimeters for groundwater and for surface water in the drainage network of the depression. The pH and concentrations of organic carbon and major elements (Si, Fe and Al) were determined. The contrasted changes reported for concentrations of Si, organic carbon and metals (Fe, Al) mainly reflect the dynamics of the groundwater and the weathering conditions that prevail in the soils. Iron is released by the reductive dissolution of Fe oxides, mostly in the Bg horizons of the upslope Acrisols. It moves laterally under the control of hydraulic gradients and migrates through the iron-depleted Podzols where it is exported to the river network. Aluminium is released from the dissolution of Al-bearing minerals (gibbsite and kaolinite) at the margin of the podzolic area but is immobilized as organo-Al complexes in spodic horizons. In downslope positions, the quick recharge of the groundwater and large release of organic compounds lead to acidification and a loss of metals (mainly Al), previously stored in the Podzols.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Copper contaminated areas pose environmental health risk to living organisms. Remediation processes are thus required for both crop production and industrial activities. This study employed bioaugmentation with copper resistant bacteria to improve phytoremediation of vineyard soils and copper mining waste contaminated with high copper concentrations. Oatmeal plant (Avena sativa L) was used for copper phytoextraction. Three copper resistant bacterial isolates from oatmeal rhizosphere (Pseudomonas putida A1 Stenotrophomonas maltophilia A2 and Acinetobacter calcoaceticus A6) were used for the stimulation of copper phytoextraction. Two long-term copper contaminated vineyard soils (Mollisol and Inceptisol) and copper mining waste from Southern Brazil were evaluated. Oatmeal plants substantially extracted copper from vineyard soils and copper mining waste. As much as 1549 mg of Cu kg(-1) dry mass was extracted from plants grown in Inceptisol soil. The vineyard Mollisol copper uptake (55 mg Cu kg(-1) of dry mass) in the shoots was significantly improved upon inoculation of oatmeal plants with isolate A2 (128 mg of Cu kg(-1) of shoot dry mass). Overall oatmeal plant biomass displayed higher potential of copper phytoextraction with inoculation of rhizosphere bacteria in vineyard soil to the extent that 404 and 327 g ha(-1) of copper removal were respectively observed in vineyard Mollisol bioaugmented with isolate A2 (S. maltophilia) and isolate A6 (A. calcoaceticus). Results suggest potential application of bacterial stimulation of phytoaccumulation of copper for biological removal of copper from contaminated areas. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A total of 152,145 weekly test-day milk yield records from 7317 first lactations of Holstein cows distributed in 93 herds in southeastern Brazil were analyzed. Test-day milk yields were classified into 44 weekly classes of DIM. The contemporary groups were defined as herd-year-week of test-day. The model included direct additive genetic, permanent environmental and residual effects as random and fixed effects of contemporary group and age of cow at calving as covariable, linear and quadratic effects. Mean trends were modeled by a cubic regression on orthogonal polynomials of DIM. Additive genetic and permanent environmental random effects were estimated by random regression on orthogonal Legendre polynomials. Residual variances were modeled using third to seventh-order variance functions or a step function with 1, 6,13,17 and 44 variance classes. Results from Akaike`s and Schwarz`s Bayesian information criterion suggested that a model considering a 7th-order Legendre polynomial for additive effect, a 12th-order polynomial for permanent environment effect and a step function with 6 classes for residual variances, fitted best. However, a parsimonious model, with a 6th-order Legendre polynomial for additive effects and a 7th-order polynomial for permanent environmental effects, yielded very similar genetic parameter estimates. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this experiment was to evaluate the effects of replacing coastcross hay NDF by soybean hull (SH) NDF on the lactation performance and eating behavior of ewes and also on the performance of their lambs. Fifty-six Santa Ines lactating ewes (56.1 +/- 6.8 kg of initial BW; mean +/- SD) were penned individually and used in a randomized complete block design with 14 blocks and 4 treatments. Diets were formulated to provide similar concentrations of NDF (56%) and CP (16%). The SH NDF replaced 33 (SH33), 67 (SH67), or 100% (SH100) of the NDF contributed by coastcross hay in a 70% forage-based diet (SH0), resulting in SH inclusion rates of 0, 25, 54, and 85% of the dietary DM. Once a week, from the second to the eighth week of lactation (weaning time), ewes were separated from their lambs, stimulated by a 6-IU i.v. oxytocin injection, and hand milked to empty the udder. After 3 h, milk production was obtained after the same procedure. Quadratic effect for milk production (142.4, 179.8, 212.6, and 202.9 g/3 h) and cubic effect for DMI (2.27, 2.69, 3.25, and 3.00 kg/d) were observed as SH inclusion increased from 0 to 85% of the dietary DM. Milk fat (7.59, 7.86, 7.59, and 7.74%), protein (4.53, 4.43, 4.40, and 4.55%), and total solids (18.24, 18.54, 18.39, and 18.64%) did not differ among the 70% forage-based diet and diets with SH NDF replacing 33, 67, or 100% of the NDF. A linear increase in lactose concentration was observed with SH inclusion. Ewe BW gain during the trial showed a cubic response (0.37, 0.03, 4.80, and 2.80 kg) with SH inclusion. The preweaning ADG of lambs increased linearly, and ADG of lambs after weaning decreased linearly with SH inclusion. Final BW of lambs (2 wk after weaning) did not differ among treatments. Eating behavior observations were conducted with 44 ewes. The same facilities, experimental design, dietary treatments, and feeding management were used. Observations were visually recorded every 5 min for a 24-h period when ewes were 46 +/- 6.8 d in milk. Eating time (min/d, min/g of DMI, and min/g of NDF intake) and time expended in rumination and chewing activities (min/g of DMI and min/g of NDF intake) decreased linearly with the addition of SH in the diets. The inclusion of SH improved DMI and milk production, also reflecting on the BW of lambs at weaning. Milk performance was not affected when SH NDF replaced 100% of hay NDF.