986 resultados para Crystal protein


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chicken riboflavin carrier protein (RCP) is a phosphoglycoprotein present in the egg white and yolk of egg-laying animals and in the sera of laying hens and of estrogenized chicks. The RCP cDNA, encoding a protein of predictedMr27,000, has been cloned into a T7 polymerase-driven vector, and high-level expression was observed on induction with IPTG inEscherichia coli.The protein was largely localized in inclusion bodies when expressed at 37°C but was present in the cytosolic fraction when induced at 22°C. At 37°C, two major bands were detected in whole-cell lysates of the strain expressing the protein. N-terminal sequence analysis indicated that the two proteins represented translated products with and without the pelB leader sequence encoded in the pET20b vector, but both included an additional 10 amino acids generated during cloning procedures. The inclusion body obtained at 37°C, on extraction with detergent, led to preferential solubilization of the protein without the pelB signal sequence. The solubilized recombinant RCP was recognized by polyclonal antisera to native RCP but radioimmunoassay revealed quantitative differences in the epitopes exhibited by the recombinant protein. Thus, sequence-specific monoclonal antibodies to chicken RCP also cross-reacted with the recombinant protein with almost equal efficiency, but antibodies which recognize conformation-dependent epitopes showed relatively reduced cross-reactivity with the recombinant protein. Polyclonal antibodies to recombinant RCP were able to recognize both the native and the denatured RCP. Administration of recombinant RCP antisera to pregnant mice led to embryonic resorption leading to early pregnancy termination. These findings reveal that the recombinant protein will be useful for investigations related to the mechanism of pregnancy termination on immunoneutralization of RCP in mammals, as well as in unraveling folding properties of RCP in terms of its ligand binding and antigenetic determinants exposed at its surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unlike the invertases from the mesophilic fungi and yeasts, invertase from a thermophilic fungus,Thermomyces lanuginosus,was unusually unstable bothin vivoandin vitro.The following observations suggested that the unstable nature of the enzyme activity in the cell-free extracts was due to the oxidation of the cysteine residue(s) in the enzyme molecule: (a) the addition of dithiothreitol or reduced glutathione stabilized invertase activity during storage of the extracts and also revived enzyme activity in the extracts which had become inactive with time; (b)N-ethylmaleimide, iodoacetamide, oxidized glutathione, cystine, or oxidized coenzyme A-inactivated invertase; (c) invertase activity was low when the ratio reduced/oxidized glutathione was lower and high when this ratio was higher, suggesting regulation of the enzyme by thiol/disulfide exchange reaction. In contrast to the activation of invertase by the thiol compounds and its inactivation by the disulfides in the cell-free extracts, the purified enzyme did not respond to these compounds. Following its inactivation, the purified enzyme required a helper protein in addition to dithiothreitol for maximal activation. A cellular protein was identified that promoted activation of invertase by dithiothreitol and it was called “PRIA” for theprotein which helps inrestoringinvertaseactivity. The revival of enzyme activity was due to the conversion of the inactive invertase molecules into an active form. A model is presented to explain the modulation of invertase activity by the thiol compounds and the disulfides, both in the crude cell-free extracts and in the purified preparations. The requirement of free sulfhydryl group(s) for the enzyme activity and, furthermore, the reciprocal effects of the thiols and the disulfides on invertase activity have not been reported for invertase from any other source. The finding of a novel invertase which shows a distinct mode of regulation demonstrates the diversity in an enzyme that has figured prominently in the development of biochemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously reported that Lyt(2+) cytotoxic T lymphocytes (CTL) can be raised against Japanese encephalitis virus (JEV) in BALB/c mice. In order to confirm the presence of H-2K(d)-restricted CTL and to examine their cross-recognition of West Wile virus (WNV), we tested the capacity of anti-JEV CTL to lyse uninfected syngeneic target cells that were pulsed with synthetic peptides. The sequence of the synthetic peptides was predicted based upon the H-2K(d) binding consensus motif. We show here that preincubation of uninfected syngeneic targets (P388D1) with JEV NS1- and NS3-derived peptides [NS1 (891-899) and NS3 (1804-1812)], but not with JEV NS5-derived peptide [NS5 (3370-3378)], partially sensitized them for lysis by polyclonal anti-JEV CTL. These results indicate the CTL recognition of NS1- and NS3-derived peptides of JEV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recA locus of pathogenic mycobacteria differs from that of nonpathogenic species because it contains large intervening sequences nested in the RecA homology region that are excised by an unusual protein-splicing reaction. In vivo assays indicated that Mycobacterium tuberculosis recA partially complemented Escherichia coli recA mutants for recombination and mutagenesis. Further, splicing of the 85 kDa precursor to 38 kDa MtRecA protein was necessary for the display of its activity, in vivo. To gain insights into the molecular basis for partial and lack of complementation by MtRecA and 85 kDa proteins, respectively, we purified both of them to homogeneity. MtRecA protein, but not the 85 kDa form, bound stoichiometrically to single-stranded DNA in the presence of ATP. MtRecA protein was cross-linked to 8-azidoadenosine 5'-triphosphate with reduced efficiency, and kinetic analysis of ATPase activity suggested that it is due to decreased affinity for ATP. In contrast, the 85 kDa form was unable to bind ATP, in the presence or absence of ssDNA and, consequently, was entirely devoid of ATPase activity. Molecular modeling studies suggested that the decreased affinity of MtRecA protein for ATP and the reduced efficiency of its hydrolysis might be due to the widening of the cleft which alters the hydrogen bonds and the contact area between the enzyme and the substrate and changes in the disposition of the amino acid residues around the magnesium ion and the gamma-phosphate. The formation of joint molecules promoted by MtRecA protein was stimulated by SSB when the former was added first. The probability of an association between the lack and partial levels of biological activity of RecA protein(s) to that of illegitimate recombination in pathogenic mycobacteria is considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium tuberculosis utilizes many mechanisms to establish itself within the macrophage, and bacterially derived cAMP is important in modulating the host cellular response. Although the genome of M. tuberculosis is endowed with a number of mammalian-like adenylyl cyclases, only a single cAMP phosphodiesterase has been identified that can decrease levels of cAMP produced by the bacterium. We present the crystal structure of the full-length and sole cAMP phosphodiesterase, Rv0805, found in M. tuberculosis, whose orthologs are present only in /the genomes of slow growing and pathogenic mycobacteria. The dimeric core catalytic domain of Rv0805 adopts a metallophosphoesterase fold, and the C-terminal region builds the active site and contributes to multiple substrate utilization.Localization of Rv0805 to the cell wall is dependent on its C terminus, and expression of either wild type or mutationally inactivated Rv0805 in M. smegmatis alters cell permeability to hydrophobic cytotoxic compounds. Rv0805 may therefore play a key role in the pathogenicity of mycobacteria, not only by hydrolyzing bacterial cAMP, but also by moonlighting as a protein that can alter cell wall functioning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solvothermal treatment of an equimolar mixture of Co(NO3)(2)center dot 6H(2)O, HCONH2 and NaN3 in MeOH at 100 degrees C yielded a three-dimensional NaCl type network Co(HCOO)(2)(HCONH2)(2) center dot HCONH2 (1a) containing formamides in the pores of the structure. Solvated pink 1a undergoes single crystal-to-single crystal (SCSC) transformation at 215 degrees C to form the desolvated dark brown product Co(HCOO)(2)-( HCONH2)(2) (1b) with the retention of the original framework. Reversible single crystal-to-single crystal transformation of 1b (brown) to 1a (pink) in the presence of excess formamide was also established at room temperature. The coordination environment around Co(II) in both 1a and 1b is octahedral with a CoN2O4 coordination composition. A similar reaction replacing Co(II) by Cr(III) produced a heterometallic 3D extended network Na[Cr(HCOO)(4)(HCONH2)(2)]center dot 2H(2)O (2a) at 100 degrees C. An increase in reaction temperature to 150 degrees C produced a simple mononuclear complex Cr(HCOO)(3)(HCONH2)(3) center dot 3H(2)O (2b). Variable temperature magnetic studies revealed the presence of a canting phenomena in both 1a and 1b, and hysteresis loop in the field dependent magnetisation plot at 2 K whereas complex 2a is simply paramagnetic in nature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studying the weak binding affinities between carbohydrates and proteins has been a central theme in sustained efforts to uncover intricate details of this class of biomolecular interaction. The amphiphilic nature of most carbohydrates, the competing nature of the surrounding water molecules to a given protein receptor site and the receptor binding site characteristics led to the realization that carbohydrates are required to exert favorable interactions, primarily through clustering of the ligands. The clustering of sugar ligands has been augmented using many different innovative molecular scaffolds. The synthesis of clustered ligands also facilitates fine-tuning of the spatial and topological proximities between the ligands, so as to allow the identification of optimal molecular features for significant binding affinity enhancements. The kinetic and thermodynamic parameters have been delineated in many instances, thereby allowing an ability to correlate the multivalent presentation and the observed ligand-receptor interaction profiles. This critical review presents various multivalent ligands, synthetic and semisynthetic, and mechanisms by which the weak binding affinities are overcome, and the ligand-receptor complexation leads to significantly enhanced binding affinities (157 references).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Double-stranded RNA (dsRNA) viruses encode only a single protein species that contains RNA-dependent RNA polymerase (RdRP) motifs. This protein is a central component in the life cycle of a dsRNA virus, carrying out both RNA transcription and replication. The architecture of viral RdRPs resembles that of a 'cupped right hand' with fingers, palm and thumb domains. Those applying de novo initiation have additional structural features, including a flexible C-terminal domain that constitutes the priming platform. Moreover, viral RdRPs must be able to interact with the incoming 3'-terminus of the template and position it so that a productive binary complex is formed. Bacteriophage phi6 of the Cystoviridae family is to date one of the best studied dsRNA viruses. The purified recombinant phi6 RdRP is highly active in vitro and possesses both RNA replication and transcription activities. The extensive biochemical observations and the atomic level crystal structure of the phi6 RdRP provides an excellent platform for in-depth studies of RNA replication in vitro. In this thesis, targeted structure-based mutagenesis, enzymatic assays and molecular mapping of phi6 RdRP and its RNA were used to elucidate the formation of productive RNA-polymerase binary complexes. The positively charged rim of the template tunnel was shown to have a significant role in the engagement of highly structured ssRNA molecules, whereas specific interactions further down in the template tunnel promote ssRNA entry to the catalytic site. This work demonstrated that by aiding the formation of a stable binary complex with optimized RNA templates, the overall polymerization activity of the phi6 RdRP can be greatly enhanced. Furthermore, proteolyzed phi6 RdRPs that possess a nick in the polypeptide chain at the hinge region, which is part of the extended loop, were better suited for catalysis at higher temperatures whilst favouring back-primed initiation. The clipped C-terminus remains associated with the main body of the polymerase and the hinge region, although structurally disordered, is involved in the control of C-terminal domain displacement. The accumulated knowhow on bacteriophage phi6 was utilized in the development of two technologies for the production of dsRNA: (i) an in vitro system that combines the T7 RNA polymerase and the phi6 RdRP to generate dsRNA molecules of practically unlimited length, and (ii) an in vivo RNA replication system based on restricted infection with phi6 polymerase complexes in bacterial cells to produce virtually unlimited amounts of dsRNA. The pools of small interfering RNAs derived from dsRNA produced by these systems were validated and shown to efficiently decrease the expression of both exogenous and endogenous targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While many measures of viewpoint goodness have been proposed in computer graphics, none have been evaluated for ribbon representations of protein secondary structure. To fill this gap, we conducted a user study on Amazon’s Mechanical Turk platform, collecting human viewpoint preferences from 65 participants for 4 representative su- perfamilies of protein domains. In particular, we evaluated viewpoint entropy, which was previously shown to be a good predictor for human viewpoint preference of other, mostly non-abstract objects. In a second study, we asked 7 molecular biology experts to find the best viewpoint of the same protein domains and compared their choices with viewpoint entropy. Our results show that viewpoint entropy overall is a significant predictor of human viewpoint preference for ribbon representations of protein secondary structure. However, the accuracy is highly dependent on the complexity of the structure: while most participants agree on good viewpoints for small, non-globular structures with few secondary structure elements, viewpoint preference varies considerably for complex structures. Finally, experts tend to choose viewpoints of both low and high viewpoint entropy to emphasize different aspects of the respective structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we investigated the possibility of treating Heymann's Nephritis (HN) by destroying antibody producing cells by targetting a toxin, gelonin - conjugated to gp330, the renal brush border antigen. HN was induced in rats by immunizing them with purified gp330. The gelonin-gp330 conjugate was administered 12 days after the antigenic challenge. Serum was screened for circulating antibodies. Proteinurea was estimated. The gp330-gelonin conjugate-treated animals had a circulating antibody titre in the serum much lower than that of diseased (untreated) animals. Proteinurea seen in diseased animals was not observed in treated animals. This work suggests the possibility of using a toxin-antigen conjugate for immunomodulating antibody mediated autoimmune renal disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two new coordination polymers [Cu(L-1)(2)](n)(ClO4)(n)center dot 2nH(2)O (1), [Cu(L-2)(2)](n)(ClO4)(n)center dot 2nH(2)O (2) of polydentate imine/pyridyl ligands, L-1 and L-2 with Cu(I) ion have been synthesized and characterized by single crystal X-ray diffraction studies, elemental analyses, IR' UV-vis and NMR spectroscopy. They represent 3-dimensional, sixfold interpenetrating diamondoid network structures having large pores of dimension, 35 x 21 angstrom(2) in 1 and 38 x 19 angstrom(2) in 2, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Dps (DNA-binding protein from starved cells) proteins from Mycobacterium smegmatis MsDps1 and MsDps2 are both DNA-binding proteins with some differences. While MsDps1 has two oligomeric states, with one of them responsible for DNA binding, MsDps2 has only one DNA-binding oligomeric state. Both the proteins however, show iron-binding activity. The MsDps1 protein has been shown previously to be induced under conditions of starvation and osmotic stress and is regulated by the extra cellular sigma factors sigma(H) and sigma(F). We show here, that the second Dps homologue in M. smegmatis, namely MsDps2, is purified in a DNA-bound form and exhibits nucleoid-like structures under the atomic force microscope. It appears that the N-terminal sequence of Dps2 plays a role in nucleoid formation. MsDps2, unlike MsDps1, does not show elevated expression in nutritionally starved or stationary phase conditions; rather its promoter is recognized by RNA polymerase containing sigma(A) or sigma(B), under in vitro conditions. We propose that due to the nucleoid-condensing ability, the expression of MsDps2 is tightly regulated inside the cells.